|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch TELECHAT model.""" |
|
|
|
import warnings |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import math |
|
from torch import nn |
|
import torch.utils.checkpoint |
|
from torch.nn import functional as F |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
|
|
from .configuration_telechat import TelechatConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "telechat" |
|
_CONFIG_FOR_DOC = "TelechatConfig" |
|
|
|
TELECHAT_PRETRAINED_MODEL_ARCHIVE_LIST = [] |
|
|
|
try: |
|
from einops import rearrange |
|
except ImportError: |
|
rearrange = None |
|
|
|
use_flash_attn = True |
|
try: |
|
from flash_attn.flash_attn_interface import flash_attn_unpadded_func |
|
except ImportError: |
|
try: |
|
from flash_attn.flash_attn_interface import flash_attn_varlen_func as flash_attn_unpadded_func |
|
except ImportError: |
|
flash_attn_unpadded_func = None |
|
|
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
|
|
def __init__(self, dim ,config, base=10000, precision=torch.half): |
|
super().__init__() |
|
self.config = config |
|
self.dim = dim |
|
self.base = base |
|
self.inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float().half() / dim)).cuda() |
|
self.max_seq_len_cached = None |
|
self.cos_cached = None |
|
self.sin_cached = None |
|
self.precision = precision |
|
|
|
def get_mscale(self,scale=1): |
|
if scale <= 1: |
|
return 1.0 |
|
return 0.1 * math.log(scale) + 1.0 |
|
|
|
def get_ntk_alpha(self, true_seq_len): |
|
context_value = math.log(true_seq_len / self.config.base_seqlen, 2) + 1 |
|
|
|
ntk_alpha = 2 ** math.ceil(context_value) - 1 |
|
ntk_alpha = max(ntk_alpha, 1) |
|
return ntk_alpha |
|
|
|
def forward(self, x, seq_dim=0, seq_len=None): |
|
if seq_len is None: |
|
seq_len = x.shape[seq_dim] |
|
seq_len = max(seq_len, self.config.training_seqlen) |
|
ntk_alpha = self.get_ntk_alpha(seq_len) |
|
self.mscale = float(self.get_mscale(seq_len / self.config.training_seqlen)) |
|
if True: |
|
base = self.base * ntk_alpha ** (self.dim / (self.dim - 2)) |
|
self.inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, device=x.device).float( )/ self.dim )) |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.einsum('i,j->ij', t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
if self.precision == torch.bfloat16: |
|
emb = emb.float() |
|
|
|
self.cos_cached = self.mscale *emb.cos()[:, None, :].half() |
|
self.sin_cached = self.mscale *emb.sin()[:, None, :].half() |
|
if self.precision == torch.bfloat16: |
|
self.cos_cached = self.cos_cached.bfloat16() |
|
self.sin_cached = self.sin_cached.bfloat16() |
|
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...] |
|
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:] |
|
return torch.cat((-x2, x1), dim=x1.ndim - 1) |
|
|
|
def apply_rotary_pos_emb_torch(q, k, cos, sin, offset: int = 0): |
|
cos, sin = cos[offset:q.shape[0] + offset, ...], sin[offset:q.shape[0] + offset, ...] |
|
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) |
|
|
|
|
|
class MixedFusedRMSNorm(nn.Module): |
|
|
|
def __init__(self, hidden_size, eps=1e-6): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
class FlashSelfAttention(torch.nn.Module): |
|
|
|
"""Implement the scaled dot product attention with softmax. |
|
Arguments |
|
--------- |
|
softmax_scale: The temperature to use for the softmax attention. |
|
(default: 1/sqrt(d_keys) where d_keys is computed at |
|
runtime) |
|
attention_dropout: The dropout rate to apply to the attention |
|
(default: 0.0) |
|
""" |
|
|
|
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0, |
|
device=None, dtype=None): |
|
super().__init__() |
|
assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, ' |
|
'e.g., with pip install flash-attn') |
|
assert rearrange is not None, 'Please install einops first, e.g., with pip install einops' |
|
self.causal = causal |
|
self.softmax_scale = softmax_scale |
|
self.dropout_p = attention_dropout |
|
|
|
def forward(self, q, k, v): |
|
"""Implements the multihead softmax attention. |
|
Arguments |
|
--------- |
|
q, k, v: The tensor containing the query, key, and value. (B, S, H, D) |
|
""" |
|
assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v))) |
|
assert all((i.is_cuda for i in (q, k, v))) |
|
|
|
batch_size, seqlen_q = q.shape[0], q.shape[1] |
|
seqlen_k = k.shape[1] |
|
|
|
q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]] |
|
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, |
|
device=q.device) |
|
self.training = False |
|
if self.training: |
|
|
|
assert seqlen_k == seqlen_q |
|
|
|
is_causal = self.causal |
|
cu_seqlens_k = cu_seqlens_q |
|
dropout_p = self.dropout_p |
|
else: |
|
|
|
|
|
is_causal = seqlen_q == seqlen_k |
|
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, |
|
device=q.device) |
|
dropout_p = 0 |
|
|
|
output = flash_attn_unpadded_func( |
|
q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, |
|
dropout_p=dropout_p, |
|
softmax_scale=self.softmax_scale, causal=is_causal |
|
) |
|
|
|
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) |
|
return output |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int |
|
) -> torch.BoolTensor: |
|
""" |
|
Make causal mask used for self-attention. |
|
""" |
|
batch_size, target_length = input_ids_shape |
|
mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device) |
|
|
|
seq_ids = torch.arange(target_length, device=device) |
|
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :] |
|
|
|
if past_key_values_length > 0: |
|
mask[:, :past_key_values_length] = False |
|
|
|
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length) |
|
return expanded_mask |
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: |
|
""" |
|
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. |
|
""" |
|
batch_size, src_length = mask.shape |
|
tgt_length = tgt_length if tgt_length is not None else src_length |
|
|
|
expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) |
|
return expanded_mask.expand(batch_size, 1, tgt_length, src_length) |
|
|
|
|
|
|
|
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor: |
|
""" |
|
Dropout add function |
|
|
|
Args: |
|
x (`torch.tensor`, *required*): |
|
input tensor |
|
residual (`torch.tensor`, *required*): |
|
residual tensor |
|
prob (`float`, *required*): |
|
dropout probability |
|
training (`bool`, *required*): |
|
training mode |
|
""" |
|
out = F.dropout(x, p=prob, training=training) |
|
out = residual + out |
|
return out |
|
|
|
|
|
def telechat_gelu_forward(x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to |
|
make the model jitable. |
|
|
|
Args: |
|
x (`torch.tensor`, *required*): |
|
input hidden states |
|
""" |
|
return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))) |
|
|
|
|
|
def telechat_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) + |
|
0.3989423 * x * torch.exp(-0.5 * x * x) |
|
|
|
Args: |
|
g (`torch.tensor`, *required*): |
|
gradient output tensor |
|
x (`torch.tensor`, *required*): |
|
input tensor |
|
""" |
|
x = x[0] |
|
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) |
|
|
|
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) |
|
return ff * g |
|
|
|
|
|
class GeLUFunction(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, input: torch.Tensor) -> torch.Tensor: |
|
ctx.save_for_backward(input) |
|
return telechat_gelu_forward(input) |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor: |
|
input = ctx.saved_tensors |
|
tmp = telechat_gelu_back(grad_output, input) |
|
return tmp |
|
|
|
|
|
class TelechatGelu(nn.Module): |
|
""" |
|
TelechatBiasGelu wrapper function that make use of the simple function on inference mode to make the model |
|
torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly |
|
copied from Megatron-DeepSpeed code and adapted for our needs |
|
|
|
See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329 |
|
""" |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
if self.training: |
|
return GeLUFunction.apply(x) |
|
else: |
|
return telechat_gelu_forward(x) |
|
|
|
|
|
class TelechatAttention(nn.Module): |
|
def __init__(self, config: TelechatConfig ,layer_idx): |
|
super().__init__() |
|
self.kv_cache = None |
|
self.layer_idx = layer_idx |
|
|
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.n_head |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.split_size = self.hidden_size |
|
self.hidden_dropout = config.hidden_dropout |
|
self.config = config |
|
|
|
if self.head_dim * self.num_heads != self.hidden_size: |
|
raise ValueError( |
|
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
|
|
|
|
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) |
|
self.beta = 1.0 |
|
|
|
self.num_key_value_heads = self.num_heads |
|
kv_projection_size = self.head_dim * self.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False) |
|
self.key_value = nn.Linear(self.hidden_size, kv_projection_size * 2, bias=False) |
|
self.dense = nn.Linear(self.hidden_size, self.hidden_size) |
|
self.attention_dropout = nn.Dropout(config.attention_dropout) |
|
self.rotary_emb = RotaryEmbedding(self.head_dim ,config=config) |
|
|
|
self.core_attention_flash = FlashSelfAttention( |
|
causal=True, attention_dropout=config.attention_dropout |
|
) |
|
|
|
self.last_key_layer = None |
|
|
|
|
|
|
|
|
|
def repeat_kv(self, hidden_states, n_rep): |
|
slen, batch, num_key_value_heads_per_partition, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, :, None, :].expand(slen, batch, num_key_value_heads_per_partition, n_rep, |
|
head_dim) |
|
return hidden_states.reshape(slen, batch, num_key_value_heads_per_partition * n_rep, head_dim) |
|
|
|
def split_tensor_along_last_dim(self, |
|
tensor: torch.Tensor, |
|
num_partitions: int, |
|
contiguous_split_chunks: bool = False, |
|
): |
|
|
|
|
|
last_dim = tensor.dim() - 1 |
|
last_dim_size = tensor.size()[last_dim] // num_partitions |
|
|
|
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) |
|
|
|
if contiguous_split_chunks: |
|
return tuple(chunk.contiguous() for chunk in tensor_list) |
|
|
|
return tensor_list |
|
|
|
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: |
|
batch_size_and_num_heads, seq_length, _ = x.shape |
|
batch_size = batch_size_and_num_heads // self.num_heads |
|
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) |
|
x = x.permute(0, 2, 1, 3) |
|
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
residual: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: bool = False, |
|
output_attentions: bool = False, |
|
): |
|
hidden_states = hidden_states.transpose(1, 0) |
|
query_layer = self.query(hidden_states) |
|
new_tensor_shape = query_layer.size()[:-1] + \ |
|
(self.num_heads, |
|
self.head_dim) |
|
query_layer = query_layer.view(*new_tensor_shape) |
|
|
|
mixed_kv_layer = self.key_value(hidden_states) |
|
new_tensor_shape = mixed_kv_layer.size()[:-1] + \ |
|
(self.num_key_value_heads, |
|
2 * self.head_dim) |
|
mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape) |
|
(key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_kv_layer, 2) |
|
|
|
output_size = (query_layer.size(1), |
|
query_layer.size(2), |
|
query_layer.size(0), |
|
key_layer.size(0)) |
|
|
|
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1) |
|
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1) |
|
|
|
apply_rotary_fn = apply_rotary_pos_emb_torch |
|
|
|
seq_len = key_layer.shape[0] |
|
offset = 0 |
|
|
|
if use_cache and layer_past != None: |
|
past_key, past_value = layer_past |
|
offset = past_key.shape[0] |
|
seq_len += offset |
|
|
|
cos, sin = self.rotary_emb(value_layer, seq_len=seq_len) |
|
|
|
query_layer, key_layer = apply_rotary_fn(query_layer, key_layer, cos, sin, offset=offset) |
|
if use_cache: |
|
if layer_past != None: |
|
past_key, past_value = layer_past |
|
key_layer = torch.cat((past_key, key_layer[-1, ...].unsqueeze(0)) ,dim=0) |
|
value_layer = torch.cat((past_value ,value_layer[-1 ,...].unsqueeze(0)) ,dim = 0) |
|
layer_past = key_layer ,value_layer |
|
s, bz, head, dim = value_layer.shape |
|
s_key = key_layer.shape[0] |
|
s_query = query_layer.shape[0] |
|
query_layer = query_layer.reshape((s_query, bz, head, dim)) |
|
key_layer = key_layer.reshape((s_key, bz, head, dim)) |
|
|
|
|
|
if self.config.flash_attn: |
|
q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous() for x in |
|
(query_layer, key_layer, value_layer)] |
|
context_layer = self.core_attention_flash(q, k, v) |
|
context_layer = rearrange(context_layer, 'b s h d -> b s (h d)').contiguous() |
|
else: |
|
|
|
query_layer = query_layer.reshape(s_query ,bz * self.num_heads, dim) |
|
|
|
key_layer = key_layer.reshape(s_key, bz * self.num_heads, dim) |
|
matmul_result = self.inv_norm_factor * torch.einsum('bik,bkj->bij', query_layer.transpose(0, 1), key_layer.transpose(0, 1).transpose(1, 2)) |
|
|
|
attention_scores = matmul_result.view(bz, self.num_heads, s_query, s_key) |
|
|
|
input_dtype = attention_scores.dtype |
|
if input_dtype == torch.float16: |
|
attention_scores = attention_scores.to(torch.float) |
|
attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) |
|
attention_probs = F.softmax(attn_weights, dim=-1).to(input_dtype) |
|
attention_probs = self.attention_dropout(attention_probs) |
|
attention_probs_reshaped = attention_probs.view(bz * self.num_heads, s_query, s_key) |
|
|
|
value_layer = value_layer.reshape(s_key ,bz * self.num_heads, dim) |
|
context_layer = torch.bmm(attention_probs_reshaped, value_layer.transpose(0, 1)) |
|
context_layer = self._merge_heads(context_layer) |
|
|
|
output_tensor = self.dense(context_layer) |
|
|
|
output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training) |
|
present = None |
|
outputs = (output_tensor, present) |
|
if output_attentions: |
|
outputs += (attention_probs,) |
|
|
|
return output_tensor, layer_past |
|
|
|
class TelechatMLP(nn.Module): |
|
def __init__(self, config: TelechatConfig): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
self.gate_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False) |
|
self.up_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False) |
|
self.down_proj = nn.Linear(config.ffn_hidden_size, hidden_size, bias=True) |
|
self.hidden_dropout = config.hidden_dropout |
|
|
|
def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: |
|
intermediate_output = self.down_proj(F.silu(self.gate_proj(hidden_states)) * self.up_proj(hidden_states)) |
|
output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training) |
|
return output |
|
|
|
|
|
class TelechatBlock(nn.Module): |
|
def __init__(self, config: TelechatConfig ,layer_idx): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
|
|
self.input_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
self.num_heads = config.n_head |
|
self.layer_idx = layer_idx |
|
self.self_attention = TelechatAttention(config ,layer_idx) |
|
self.post_attention_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
self.mlp = TelechatMLP(config) |
|
|
|
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm |
|
self.hidden_dropout = config.hidden_dropout |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: bool = False, |
|
output_attentions: bool = False, |
|
): |
|
layernorm_output = self.input_layernorm(hidden_states) |
|
if self.apply_residual_connection_post_layernorm: |
|
residual = layernorm_output |
|
else: |
|
residual = hidden_states |
|
|
|
attn_outputs = self.self_attention( |
|
layernorm_output, |
|
residual, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
attention_output = attn_outputs[0] |
|
outputs = attn_outputs[1:] |
|
layernorm_output = self.post_attention_layernorm(attention_output) |
|
|
|
if self.apply_residual_connection_post_layernorm: |
|
residual = layernorm_output |
|
else: |
|
residual = attention_output |
|
output = self.mlp(layernorm_output, residual) |
|
|
|
if use_cache: |
|
outputs = (output,) + outputs |
|
else: |
|
outputs = (output,) + outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
class TelechatPreTrainedModel(PreTrainedModel): |
|
config_class = TelechatConfig |
|
base_model_prefix = "transformer" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["TelechatBlock"] |
|
_skip_keys_device_placement = "past_key_values" |
|
|
|
def __init__(self, *inputs, **kwargs): |
|
super().__init__(*inputs, **kwargs) |
|
|
|
def _init_weights(self, module: nn.Module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
elif isinstance(module, LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False): |
|
if isinstance(module, TelechatModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class TelechatModel(TelechatPreTrainedModel): |
|
def __init__(self, config: TelechatConfig): |
|
super().__init__(config) |
|
|
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.n_head |
|
self.config = config |
|
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) |
|
if self.config.embed_layernorm: |
|
self.word_embeddings_layernorm = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon) |
|
|
|
self.h = nn.ModuleList([TelechatBlock(config ,_) for _ in range(config.num_hidden_layers)]) |
|
self.ln_f = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon) |
|
self.gradient_checkpointing = False |
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.word_embeddings |
|
|
|
def _prepare_attn_mask( |
|
self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int |
|
) -> torch.BoolTensor: |
|
combined_attention_mask = None |
|
device = attention_mask.device |
|
_, src_length = input_shape |
|
|
|
if src_length > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, device=device, past_key_values_length=past_key_values_length |
|
) |
|
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def set_input_embeddings(self, new_embeddings: torch.Tensor): |
|
self.word_embeddings = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**deprecated_arguments, |
|
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
|
|
if past_key_values is None: |
|
past_key_values = tuple([None] * len(self.h)) |
|
|
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
hidden_states = inputs_embeds |
|
|
|
if self.config.embed_layernorm: |
|
hidden_states = self.word_embeddings_layernorm(inputs_embeds) |
|
|
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
use_cache = False |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
if past_key_values[0] is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
if attention_mask is None: |
|
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) |
|
else: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
causal_mask = self._prepare_attn_mask( |
|
attention_mask, |
|
input_shape=(batch_size, seq_length), |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) |
|
|
|
return custom_forward |
|
|
|
outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
causal_mask, |
|
layer_past, |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=causal_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) |
|
hidden_states = self.ln_f(hidden_states) |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
class TelechatForCausalLM(TelechatPreTrainedModel): |
|
|
|
_keys_to_ignore_on_load_missing = [ r"lm_head.weight"] |
|
def __init__(self, config: TelechatConfig): |
|
super().__init__(config) |
|
self.transformer = TelechatModel(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings: torch.Tensor): |
|
self.lm_head = new_embeddings |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> dict: |
|
if past_key_values: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**deprecated_arguments, |
|
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(lm_logits.device) |
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
batch_size, seq_length, vocab_size = shift_logits.shape |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|