bert-large-mnli-3ep / README.md
amodaresi's picture
Add model and its dependencies
9b1fdda
|
raw
history blame
1.82 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - ''
metrics:
  - accuracy
model-index:
  - name: SEED0042
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: MNLI
          type: ''
          args: mnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8572592969943963

SEED0042

This model is a fine-tuned version of bert-large-uncased on the MNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5092
  • Accuracy: 0.8573

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: not_parallel
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4736 1.0 12271 0.4213 0.8372
0.3248 2.0 24542 0.4055 0.8538
0.1571 3.0 36813 0.5092 0.8573

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.11.6