TechxGenus commited on
Commit
3ae390a
1 Parent(s): d18a139

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -2
README.md CHANGED
@@ -19,10 +19,10 @@ We've fine-tuned Gemma-2b with an additional 0.7 billion high-quality, code-rela
19
 
20
  ### Usage
21
 
22
- Here give an example of how to use our model.
23
 
24
  ```python
25
- from transformers import pipeline
26
  import torch
27
  PROMPT = """### Instruction
28
  {instruction}
@@ -30,6 +30,29 @@ PROMPT = """### Instruction
30
  """
31
  instruction = <Your code instruction here>
32
  prompt = PROMPT.format(instruction=instruction)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  generator = pipeline(
34
  model="TechxGenus/CodeGemma-2b",
35
  task="text-generation",
 
19
 
20
  ### Usage
21
 
22
+ Here give some examples of how to use our model:
23
 
24
  ```python
25
+ from transformers import AutoTokenizer, AutoModelForCausalLM
26
  import torch
27
  PROMPT = """### Instruction
28
  {instruction}
 
30
  """
31
  instruction = <Your code instruction here>
32
  prompt = PROMPT.format(instruction=instruction)
33
+ tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CodeGemma-2b")
34
+ model = AutoModelForCausalLM.from_pretrained(
35
+ "TechxGenus/CodeGemma-2b",
36
+ torch_dtype=torch.bfloat16,
37
+ device_map="auto",
38
+ )
39
+ inputs = tokenizer.encode(prompt, return_tensors="pt")
40
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=2048)
41
+ print(tokenizer.decode(outputs[0]))
42
+ ```
43
+
44
+ With text-generation pipeline:
45
+
46
+
47
+ ```python
48
+ from transformers import pipeline
49
+ import torch
50
+ PROMPT = """<bos>### Instruction
51
+ {instruction}
52
+ ### Response
53
+ """
54
+ instruction = <Your code instruction here>
55
+ prompt = PROMPT.format(instruction=instruction)
56
  generator = pipeline(
57
  model="TechxGenus/CodeGemma-2b",
58
  task="text-generation",