TearGosling
commited on
Commit
•
15a0bd6
1
Parent(s):
5c61222
Upload folder using huggingface_hub
Browse files- added_tokens.json +145 -0
- config.json +50 -0
- configuration_gptj_moe.py +120 -0
- generation_config.json +6 -0
- merges.txt +0 -0
- model-00001-of-00007.safetensors +3 -0
- model-00002-of-00007.safetensors +3 -0
- model-00003-of-00007.safetensors +3 -0
- model-00004-of-00007.safetensors +3 -0
- model-00005-of-00007.safetensors +3 -0
- model-00006-of-00007.safetensors +3 -0
- model-00007-of-00007.safetensors +3 -0
- model.safetensors.index.json +656 -0
- modeling_gptj_moe.py +671 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1166 -0
- vocab.json +0 -0
added_tokens.json
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|extratoken_100|>": 50356,
|
3 |
+
"<|extratoken_101|>": 50357,
|
4 |
+
"<|extratoken_102|>": 50358,
|
5 |
+
"<|extratoken_103|>": 50359,
|
6 |
+
"<|extratoken_104|>": 50360,
|
7 |
+
"<|extratoken_105|>": 50361,
|
8 |
+
"<|extratoken_106|>": 50362,
|
9 |
+
"<|extratoken_107|>": 50363,
|
10 |
+
"<|extratoken_108|>": 50364,
|
11 |
+
"<|extratoken_109|>": 50365,
|
12 |
+
"<|extratoken_10|>": 50266,
|
13 |
+
"<|extratoken_110|>": 50366,
|
14 |
+
"<|extratoken_111|>": 50367,
|
15 |
+
"<|extratoken_112|>": 50368,
|
16 |
+
"<|extratoken_113|>": 50369,
|
17 |
+
"<|extratoken_114|>": 50370,
|
18 |
+
"<|extratoken_115|>": 50371,
|
19 |
+
"<|extratoken_116|>": 50372,
|
20 |
+
"<|extratoken_117|>": 50373,
|
21 |
+
"<|extratoken_118|>": 50374,
|
22 |
+
"<|extratoken_119|>": 50375,
|
23 |
+
"<|extratoken_11|>": 50267,
|
24 |
+
"<|extratoken_120|>": 50376,
|
25 |
+
"<|extratoken_121|>": 50377,
|
26 |
+
"<|extratoken_122|>": 50378,
|
27 |
+
"<|extratoken_123|>": 50379,
|
28 |
+
"<|extratoken_124|>": 50380,
|
29 |
+
"<|extratoken_125|>": 50381,
|
30 |
+
"<|extratoken_126|>": 50382,
|
31 |
+
"<|extratoken_127|>": 50383,
|
32 |
+
"<|extratoken_128|>": 50384,
|
33 |
+
"<|extratoken_129|>": 50385,
|
34 |
+
"<|extratoken_12|>": 50268,
|
35 |
+
"<|extratoken_130|>": 50386,
|
36 |
+
"<|extratoken_131|>": 50387,
|
37 |
+
"<|extratoken_132|>": 50388,
|
38 |
+
"<|extratoken_133|>": 50389,
|
39 |
+
"<|extratoken_134|>": 50390,
|
40 |
+
"<|extratoken_135|>": 50391,
|
41 |
+
"<|extratoken_136|>": 50392,
|
42 |
+
"<|extratoken_137|>": 50393,
|
43 |
+
"<|extratoken_138|>": 50394,
|
44 |
+
"<|extratoken_139|>": 50395,
|
45 |
+
"<|extratoken_13|>": 50269,
|
46 |
+
"<|extratoken_140|>": 50396,
|
47 |
+
"<|extratoken_141|>": 50397,
|
48 |
+
"<|extratoken_142|>": 50398,
|
49 |
+
"<|extratoken_143|>": 50399,
|
50 |
+
"<|extratoken_14|>": 50270,
|
51 |
+
"<|extratoken_15|>": 50271,
|
52 |
+
"<|extratoken_16|>": 50272,
|
53 |
+
"<|extratoken_17|>": 50273,
|
54 |
+
"<|extratoken_18|>": 50274,
|
55 |
+
"<|extratoken_19|>": 50275,
|
56 |
+
"<|extratoken_1|>": 50257,
|
57 |
+
"<|extratoken_20|>": 50276,
|
58 |
+
"<|extratoken_21|>": 50277,
|
59 |
+
"<|extratoken_22|>": 50278,
|
60 |
+
"<|extratoken_23|>": 50279,
|
61 |
+
"<|extratoken_24|>": 50280,
|
62 |
+
"<|extratoken_25|>": 50281,
|
63 |
+
"<|extratoken_26|>": 50282,
|
64 |
+
"<|extratoken_27|>": 50283,
|
65 |
+
"<|extratoken_28|>": 50284,
|
66 |
+
"<|extratoken_29|>": 50285,
|
67 |
+
"<|extratoken_2|>": 50258,
|
68 |
+
"<|extratoken_30|>": 50286,
|
69 |
+
"<|extratoken_31|>": 50287,
|
70 |
+
"<|extratoken_32|>": 50288,
|
71 |
+
"<|extratoken_33|>": 50289,
|
72 |
+
"<|extratoken_34|>": 50290,
|
73 |
+
"<|extratoken_35|>": 50291,
|
74 |
+
"<|extratoken_36|>": 50292,
|
75 |
+
"<|extratoken_37|>": 50293,
|
76 |
+
"<|extratoken_38|>": 50294,
|
77 |
+
"<|extratoken_39|>": 50295,
|
78 |
+
"<|extratoken_3|>": 50259,
|
79 |
+
"<|extratoken_40|>": 50296,
|
80 |
+
"<|extratoken_41|>": 50297,
|
81 |
+
"<|extratoken_42|>": 50298,
|
82 |
+
"<|extratoken_43|>": 50299,
|
83 |
+
"<|extratoken_44|>": 50300,
|
84 |
+
"<|extratoken_45|>": 50301,
|
85 |
+
"<|extratoken_46|>": 50302,
|
86 |
+
"<|extratoken_47|>": 50303,
|
87 |
+
"<|extratoken_48|>": 50304,
|
88 |
+
"<|extratoken_49|>": 50305,
|
89 |
+
"<|extratoken_4|>": 50260,
|
90 |
+
"<|extratoken_50|>": 50306,
|
91 |
+
"<|extratoken_51|>": 50307,
|
92 |
+
"<|extratoken_52|>": 50308,
|
93 |
+
"<|extratoken_53|>": 50309,
|
94 |
+
"<|extratoken_54|>": 50310,
|
95 |
+
"<|extratoken_55|>": 50311,
|
96 |
+
"<|extratoken_56|>": 50312,
|
97 |
+
"<|extratoken_57|>": 50313,
|
98 |
+
"<|extratoken_58|>": 50314,
|
99 |
+
"<|extratoken_59|>": 50315,
|
100 |
+
"<|extratoken_5|>": 50261,
|
101 |
+
"<|extratoken_60|>": 50316,
|
102 |
+
"<|extratoken_61|>": 50317,
|
103 |
+
"<|extratoken_62|>": 50318,
|
104 |
+
"<|extratoken_63|>": 50319,
|
105 |
+
"<|extratoken_64|>": 50320,
|
106 |
+
"<|extratoken_65|>": 50321,
|
107 |
+
"<|extratoken_66|>": 50322,
|
108 |
+
"<|extratoken_67|>": 50323,
|
109 |
+
"<|extratoken_68|>": 50324,
|
110 |
+
"<|extratoken_69|>": 50325,
|
111 |
+
"<|extratoken_6|>": 50262,
|
112 |
+
"<|extratoken_70|>": 50326,
|
113 |
+
"<|extratoken_71|>": 50327,
|
114 |
+
"<|extratoken_72|>": 50328,
|
115 |
+
"<|extratoken_73|>": 50329,
|
116 |
+
"<|extratoken_74|>": 50330,
|
117 |
+
"<|extratoken_75|>": 50331,
|
118 |
+
"<|extratoken_76|>": 50332,
|
119 |
+
"<|extratoken_77|>": 50333,
|
120 |
+
"<|extratoken_78|>": 50334,
|
121 |
+
"<|extratoken_79|>": 50335,
|
122 |
+
"<|extratoken_7|>": 50263,
|
123 |
+
"<|extratoken_80|>": 50336,
|
124 |
+
"<|extratoken_81|>": 50337,
|
125 |
+
"<|extratoken_82|>": 50338,
|
126 |
+
"<|extratoken_83|>": 50339,
|
127 |
+
"<|extratoken_84|>": 50340,
|
128 |
+
"<|extratoken_85|>": 50341,
|
129 |
+
"<|extratoken_86|>": 50342,
|
130 |
+
"<|extratoken_87|>": 50343,
|
131 |
+
"<|extratoken_88|>": 50344,
|
132 |
+
"<|extratoken_89|>": 50345,
|
133 |
+
"<|extratoken_8|>": 50264,
|
134 |
+
"<|extratoken_90|>": 50346,
|
135 |
+
"<|extratoken_91|>": 50347,
|
136 |
+
"<|extratoken_92|>": 50348,
|
137 |
+
"<|extratoken_93|>": 50349,
|
138 |
+
"<|extratoken_94|>": 50350,
|
139 |
+
"<|extratoken_95|>": 50351,
|
140 |
+
"<|extratoken_96|>": 50352,
|
141 |
+
"<|extratoken_97|>": 50353,
|
142 |
+
"<|extratoken_98|>": 50354,
|
143 |
+
"<|extratoken_99|>": 50355,
|
144 |
+
"<|extratoken_9|>": 50265
|
145 |
+
}
|
config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_function": "gelu_new",
|
3 |
+
"architectures": [
|
4 |
+
"GPTJMoEForCausalLM"
|
5 |
+
],
|
6 |
+
"attn_pdrop": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_gptj_moe.GPTJMoEConfig",
|
9 |
+
"AutoModel": "modeling_gptj_moe.GPTJMoEModel",
|
10 |
+
"AutoModelForCausalLM": "modeling_gptj_moe.GPTJMoEForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 50256,
|
13 |
+
"embd_pdrop": 0.0,
|
14 |
+
"eos_token_id": 50256,
|
15 |
+
"gradient_checkpointing": false,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"layer_norm_epsilon": 1e-05,
|
18 |
+
"model_type": "gptj_moe",
|
19 |
+
"n_embd": 4096,
|
20 |
+
"n_head": 16,
|
21 |
+
"n_inner": null,
|
22 |
+
"n_layer": 28,
|
23 |
+
"n_positions": 2048,
|
24 |
+
"num_experts_per_tok": 2,
|
25 |
+
"num_local_experts": 4,
|
26 |
+
"output_router_logits": false,
|
27 |
+
"resid_pdrop": 0.0,
|
28 |
+
"rotary_dim": 64,
|
29 |
+
"router_aux_loss_coef": 0.001,
|
30 |
+
"router_jitter_noise": 0.0,
|
31 |
+
"scale_attn_weights": true,
|
32 |
+
"summary_activation": null,
|
33 |
+
"summary_first_dropout": 0.1,
|
34 |
+
"summary_proj_to_labels": true,
|
35 |
+
"summary_type": "cls_index",
|
36 |
+
"summary_use_proj": true,
|
37 |
+
"task_specific_params": {
|
38 |
+
"text-generation": {
|
39 |
+
"do_sample": true,
|
40 |
+
"max_length": 50,
|
41 |
+
"temperature": 1.0
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"tie_word_embeddings": false,
|
45 |
+
"tokenizer_class": "GPT2Tokenizer",
|
46 |
+
"torch_dtype": "bfloat16",
|
47 |
+
"transformers_version": "4.40.0.dev0",
|
48 |
+
"use_cache": true,
|
49 |
+
"vocab_size": 50400
|
50 |
+
}
|
configuration_gptj_moe.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
from transformers.utils import logging
|
3 |
+
|
4 |
+
logger = logging.get_logger(__name__)
|
5 |
+
|
6 |
+
class GPTJMoEConfig(PretrainedConfig):
|
7 |
+
r"""
|
8 |
+
This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J
|
9 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
10 |
+
defaults will yield a similar configuration to that of the GPT-J
|
11 |
+
[EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from
|
12 |
+
[`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
13 |
+
for more information.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
vocab_size (`int`, *optional*, defaults to 50400):
|
17 |
+
Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the
|
18 |
+
`inputs_ids` passed when calling [`GPTJModel`].
|
19 |
+
n_positions (`int`, *optional*, defaults to 2048):
|
20 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
21 |
+
just in case (e.g., 512 or 1024 or 2048).
|
22 |
+
n_embd (`int`, *optional*, defaults to 4096):
|
23 |
+
Dimensionality of the embeddings and hidden states.
|
24 |
+
n_layer (`int`, *optional*, defaults to 28):
|
25 |
+
Number of hidden layers in the Transformer encoder.
|
26 |
+
n_head (`int`, *optional*, defaults to 16):
|
27 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
28 |
+
rotary_dim (`int`, *optional*, defaults to 64):
|
29 |
+
Number of dimensions in the embedding that Rotary Position Embedding is applied to.
|
30 |
+
n_inner (`int`, *optional*, defaults to None):
|
31 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
32 |
+
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
|
33 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
34 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
35 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
36 |
+
embd_pdrop (`int`, *optional*, defaults to 0.1):
|
37 |
+
The dropout ratio for the embeddings.
|
38 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
39 |
+
The dropout ratio for the attention.
|
40 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
41 |
+
The epsilon to use in the layer normalization layers.
|
42 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
43 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
44 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
45 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
46 |
+
num_experts_per_tok (`int`, *optional*, defaults to 2):
|
47 |
+
The number of experts to root per-token, can be also interpreted as the `top-p` routing
|
48 |
+
parameter
|
49 |
+
num_local_experts (`int`, *optional*, defaults to 4):
|
50 |
+
Number of experts per Sparse MLP layer.
|
51 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
52 |
+
Whether or not the router logits should be returned by the model. Enabeling this will also
|
53 |
+
allow the model to output the auxiliary loss. See [here]() for more details
|
54 |
+
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
55 |
+
The aux loss factor for the total loss.
|
56 |
+
router_jitter_noise (`float`, *optional*, defaults to 0.0):
|
57 |
+
Amount of noise to add to the router.
|
58 |
+
"""
|
59 |
+
|
60 |
+
model_type = "gptj_moe"
|
61 |
+
attribute_map = {
|
62 |
+
"max_position_embeddings": "n_positions",
|
63 |
+
"hidden_size": "n_embd",
|
64 |
+
"num_attention_heads": "n_head",
|
65 |
+
"num_hidden_layers": "n_layer",
|
66 |
+
}
|
67 |
+
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
vocab_size=50400,
|
71 |
+
n_positions=2048,
|
72 |
+
n_embd=4096,
|
73 |
+
n_layer=28,
|
74 |
+
n_head=16,
|
75 |
+
rotary_dim=64,
|
76 |
+
n_inner=None,
|
77 |
+
activation_function="gelu_new",
|
78 |
+
resid_pdrop=0.0,
|
79 |
+
embd_pdrop=0.0,
|
80 |
+
attn_pdrop=0.0,
|
81 |
+
layer_norm_epsilon=1e-5,
|
82 |
+
initializer_range=0.02,
|
83 |
+
use_cache=True,
|
84 |
+
bos_token_id=50256,
|
85 |
+
eos_token_id=50256,
|
86 |
+
tie_word_embeddings=False,
|
87 |
+
n_experts_per_tok=2,
|
88 |
+
n_local_experts=4,
|
89 |
+
output_router_logits=False,
|
90 |
+
router_aux_loss_coef=0.001,
|
91 |
+
router_jitter_noise=0.0,
|
92 |
+
**kwargs,
|
93 |
+
):
|
94 |
+
self.vocab_size = vocab_size
|
95 |
+
self.n_positions = n_positions
|
96 |
+
self.n_embd = n_embd
|
97 |
+
self.n_layer = n_layer
|
98 |
+
self.n_head = n_head
|
99 |
+
self.n_inner = n_inner
|
100 |
+
self.rotary_dim = rotary_dim
|
101 |
+
self.activation_function = activation_function
|
102 |
+
self.resid_pdrop = resid_pdrop
|
103 |
+
self.embd_pdrop = embd_pdrop
|
104 |
+
self.attn_pdrop = attn_pdrop
|
105 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
106 |
+
self.initializer_range = initializer_range
|
107 |
+
self.use_cache = use_cache
|
108 |
+
|
109 |
+
self.bos_token_id = bos_token_id
|
110 |
+
self.eos_token_id = eos_token_id
|
111 |
+
|
112 |
+
self.num_experts_per_tok = n_experts_per_tok
|
113 |
+
self.num_local_experts = n_local_experts
|
114 |
+
self.output_router_logits = output_router_logits
|
115 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
116 |
+
self.router_jitter_noise = router_jitter_noise
|
117 |
+
|
118 |
+
super().__init__(
|
119 |
+
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
|
120 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 50256,
|
4 |
+
"eos_token_id": 50256,
|
5 |
+
"transformers_version": "4.40.0.dev0"
|
6 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56b567fa4fb5ba701d0a89e3e21f61bf450adaa93baeee7877cf918723e31086
|
3 |
+
size 4977101656
|
model-00002-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9af7ef4e8ce64473087fbf84f72524a16907ecde61330362cafe2c9aa1232e0
|
3 |
+
size 4966952456
|
model-00003-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:505a7867107466c875521fa16f6cafec577f36ebf9c99313ca293531b26fafcd
|
3 |
+
size 4966944520
|
model-00004-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:827cb5b4972c4b3b1b26b6da5b8e5edaf1a9b55939bff202002b017bf0bc5beb
|
3 |
+
size 4966952864
|
model-00005-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dea322e2cf83970e37a13679157d50a8effe44b2a5ab742dbd5ab0b27c87d281
|
3 |
+
size 4966952552
|
model-00006-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db980fdb921b826014a3704fa9516b5a77857b64640216a97492b895b3ff975d
|
3 |
+
size 4966927976
|
model-00007-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45af2b4065d5a8d0058e6a59729774dea7fa54b3c25e585a0889e90205a990ac
|
3 |
+
size 4842951552
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,656 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 34654702016
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.bias": "model-00007-of-00007.safetensors",
|
7 |
+
"lm_head.weight": "model-00007-of-00007.safetensors",
|
8 |
+
"transformer.h.0.attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
9 |
+
"transformer.h.0.attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
10 |
+
"transformer.h.0.attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
11 |
+
"transformer.h.0.attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
12 |
+
"transformer.h.0.block_sparse_moe.experts.0.fc_in.bias": "model-00001-of-00007.safetensors",
|
13 |
+
"transformer.h.0.block_sparse_moe.experts.0.fc_in.weight": "model-00001-of-00007.safetensors",
|
14 |
+
"transformer.h.0.block_sparse_moe.experts.0.fc_out.bias": "model-00001-of-00007.safetensors",
|
15 |
+
"transformer.h.0.block_sparse_moe.experts.0.fc_out.weight": "model-00001-of-00007.safetensors",
|
16 |
+
"transformer.h.0.block_sparse_moe.experts.1.fc_in.bias": "model-00001-of-00007.safetensors",
|
17 |
+
"transformer.h.0.block_sparse_moe.experts.1.fc_in.weight": "model-00001-of-00007.safetensors",
|
18 |
+
"transformer.h.0.block_sparse_moe.experts.1.fc_out.bias": "model-00001-of-00007.safetensors",
|
19 |
+
"transformer.h.0.block_sparse_moe.experts.1.fc_out.weight": "model-00001-of-00007.safetensors",
|
20 |
+
"transformer.h.0.block_sparse_moe.experts.2.fc_in.bias": "model-00001-of-00007.safetensors",
|
21 |
+
"transformer.h.0.block_sparse_moe.experts.2.fc_in.weight": "model-00001-of-00007.safetensors",
|
22 |
+
"transformer.h.0.block_sparse_moe.experts.2.fc_out.bias": "model-00001-of-00007.safetensors",
|
23 |
+
"transformer.h.0.block_sparse_moe.experts.2.fc_out.weight": "model-00001-of-00007.safetensors",
|
24 |
+
"transformer.h.0.block_sparse_moe.experts.3.fc_in.bias": "model-00001-of-00007.safetensors",
|
25 |
+
"transformer.h.0.block_sparse_moe.experts.3.fc_in.weight": "model-00001-of-00007.safetensors",
|
26 |
+
"transformer.h.0.block_sparse_moe.experts.3.fc_out.bias": "model-00001-of-00007.safetensors",
|
27 |
+
"transformer.h.0.block_sparse_moe.experts.3.fc_out.weight": "model-00001-of-00007.safetensors",
|
28 |
+
"transformer.h.0.block_sparse_moe.gate.weight": "model-00001-of-00007.safetensors",
|
29 |
+
"transformer.h.0.ln_1.bias": "model-00001-of-00007.safetensors",
|
30 |
+
"transformer.h.0.ln_1.weight": "model-00001-of-00007.safetensors",
|
31 |
+
"transformer.h.1.attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
32 |
+
"transformer.h.1.attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
33 |
+
"transformer.h.1.attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
34 |
+
"transformer.h.1.attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
35 |
+
"transformer.h.1.block_sparse_moe.experts.0.fc_in.bias": "model-00001-of-00007.safetensors",
|
36 |
+
"transformer.h.1.block_sparse_moe.experts.0.fc_in.weight": "model-00001-of-00007.safetensors",
|
37 |
+
"transformer.h.1.block_sparse_moe.experts.0.fc_out.bias": "model-00001-of-00007.safetensors",
|
38 |
+
"transformer.h.1.block_sparse_moe.experts.0.fc_out.weight": "model-00001-of-00007.safetensors",
|
39 |
+
"transformer.h.1.block_sparse_moe.experts.1.fc_in.bias": "model-00001-of-00007.safetensors",
|
40 |
+
"transformer.h.1.block_sparse_moe.experts.1.fc_in.weight": "model-00001-of-00007.safetensors",
|
41 |
+
"transformer.h.1.block_sparse_moe.experts.1.fc_out.bias": "model-00001-of-00007.safetensors",
|
42 |
+
"transformer.h.1.block_sparse_moe.experts.1.fc_out.weight": "model-00001-of-00007.safetensors",
|
43 |
+
"transformer.h.1.block_sparse_moe.experts.2.fc_in.bias": "model-00001-of-00007.safetensors",
|
44 |
+
"transformer.h.1.block_sparse_moe.experts.2.fc_in.weight": "model-00001-of-00007.safetensors",
|
45 |
+
"transformer.h.1.block_sparse_moe.experts.2.fc_out.bias": "model-00001-of-00007.safetensors",
|
46 |
+
"transformer.h.1.block_sparse_moe.experts.2.fc_out.weight": "model-00001-of-00007.safetensors",
|
47 |
+
"transformer.h.1.block_sparse_moe.experts.3.fc_in.bias": "model-00001-of-00007.safetensors",
|
48 |
+
"transformer.h.1.block_sparse_moe.experts.3.fc_in.weight": "model-00001-of-00007.safetensors",
|
49 |
+
"transformer.h.1.block_sparse_moe.experts.3.fc_out.bias": "model-00001-of-00007.safetensors",
|
50 |
+
"transformer.h.1.block_sparse_moe.experts.3.fc_out.weight": "model-00001-of-00007.safetensors",
|
51 |
+
"transformer.h.1.block_sparse_moe.gate.weight": "model-00001-of-00007.safetensors",
|
52 |
+
"transformer.h.1.ln_1.bias": "model-00001-of-00007.safetensors",
|
53 |
+
"transformer.h.1.ln_1.weight": "model-00001-of-00007.safetensors",
|
54 |
+
"transformer.h.10.attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
55 |
+
"transformer.h.10.attn.out_proj.weight": "model-00003-of-00007.safetensors",
|
56 |
+
"transformer.h.10.attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
57 |
+
"transformer.h.10.attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
58 |
+
"transformer.h.10.block_sparse_moe.experts.0.fc_in.bias": "model-00003-of-00007.safetensors",
|
59 |
+
"transformer.h.10.block_sparse_moe.experts.0.fc_in.weight": "model-00003-of-00007.safetensors",
|
60 |
+
"transformer.h.10.block_sparse_moe.experts.0.fc_out.bias": "model-00003-of-00007.safetensors",
|
61 |
+
"transformer.h.10.block_sparse_moe.experts.0.fc_out.weight": "model-00003-of-00007.safetensors",
|
62 |
+
"transformer.h.10.block_sparse_moe.experts.1.fc_in.bias": "model-00003-of-00007.safetensors",
|
63 |
+
"transformer.h.10.block_sparse_moe.experts.1.fc_in.weight": "model-00003-of-00007.safetensors",
|
64 |
+
"transformer.h.10.block_sparse_moe.experts.1.fc_out.bias": "model-00003-of-00007.safetensors",
|
65 |
+
"transformer.h.10.block_sparse_moe.experts.1.fc_out.weight": "model-00003-of-00007.safetensors",
|
66 |
+
"transformer.h.10.block_sparse_moe.experts.2.fc_in.bias": "model-00003-of-00007.safetensors",
|
67 |
+
"transformer.h.10.block_sparse_moe.experts.2.fc_in.weight": "model-00003-of-00007.safetensors",
|
68 |
+
"transformer.h.10.block_sparse_moe.experts.2.fc_out.bias": "model-00003-of-00007.safetensors",
|
69 |
+
"transformer.h.10.block_sparse_moe.experts.2.fc_out.weight": "model-00003-of-00007.safetensors",
|
70 |
+
"transformer.h.10.block_sparse_moe.experts.3.fc_in.bias": "model-00003-of-00007.safetensors",
|
71 |
+
"transformer.h.10.block_sparse_moe.experts.3.fc_in.weight": "model-00003-of-00007.safetensors",
|
72 |
+
"transformer.h.10.block_sparse_moe.experts.3.fc_out.bias": "model-00003-of-00007.safetensors",
|
73 |
+
"transformer.h.10.block_sparse_moe.experts.3.fc_out.weight": "model-00003-of-00007.safetensors",
|
74 |
+
"transformer.h.10.block_sparse_moe.gate.weight": "model-00003-of-00007.safetensors",
|
75 |
+
"transformer.h.10.ln_1.bias": "model-00003-of-00007.safetensors",
|
76 |
+
"transformer.h.10.ln_1.weight": "model-00003-of-00007.safetensors",
|
77 |
+
"transformer.h.11.attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
78 |
+
"transformer.h.11.attn.out_proj.weight": "model-00003-of-00007.safetensors",
|
79 |
+
"transformer.h.11.attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
80 |
+
"transformer.h.11.attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
81 |
+
"transformer.h.11.block_sparse_moe.experts.0.fc_in.bias": "model-00003-of-00007.safetensors",
|
82 |
+
"transformer.h.11.block_sparse_moe.experts.0.fc_in.weight": "model-00003-of-00007.safetensors",
|
83 |
+
"transformer.h.11.block_sparse_moe.experts.0.fc_out.bias": "model-00003-of-00007.safetensors",
|
84 |
+
"transformer.h.11.block_sparse_moe.experts.0.fc_out.weight": "model-00003-of-00007.safetensors",
|
85 |
+
"transformer.h.11.block_sparse_moe.experts.1.fc_in.bias": "model-00003-of-00007.safetensors",
|
86 |
+
"transformer.h.11.block_sparse_moe.experts.1.fc_in.weight": "model-00003-of-00007.safetensors",
|
87 |
+
"transformer.h.11.block_sparse_moe.experts.1.fc_out.bias": "model-00003-of-00007.safetensors",
|
88 |
+
"transformer.h.11.block_sparse_moe.experts.1.fc_out.weight": "model-00003-of-00007.safetensors",
|
89 |
+
"transformer.h.11.block_sparse_moe.experts.2.fc_in.bias": "model-00003-of-00007.safetensors",
|
90 |
+
"transformer.h.11.block_sparse_moe.experts.2.fc_in.weight": "model-00003-of-00007.safetensors",
|
91 |
+
"transformer.h.11.block_sparse_moe.experts.2.fc_out.bias": "model-00003-of-00007.safetensors",
|
92 |
+
"transformer.h.11.block_sparse_moe.experts.2.fc_out.weight": "model-00003-of-00007.safetensors",
|
93 |
+
"transformer.h.11.block_sparse_moe.experts.3.fc_in.bias": "model-00003-of-00007.safetensors",
|
94 |
+
"transformer.h.11.block_sparse_moe.experts.3.fc_in.weight": "model-00003-of-00007.safetensors",
|
95 |
+
"transformer.h.11.block_sparse_moe.experts.3.fc_out.bias": "model-00003-of-00007.safetensors",
|
96 |
+
"transformer.h.11.block_sparse_moe.experts.3.fc_out.weight": "model-00003-of-00007.safetensors",
|
97 |
+
"transformer.h.11.block_sparse_moe.gate.weight": "model-00003-of-00007.safetensors",
|
98 |
+
"transformer.h.11.ln_1.bias": "model-00003-of-00007.safetensors",
|
99 |
+
"transformer.h.11.ln_1.weight": "model-00003-of-00007.safetensors",
|
100 |
+
"transformer.h.12.attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
101 |
+
"transformer.h.12.attn.out_proj.weight": "model-00004-of-00007.safetensors",
|
102 |
+
"transformer.h.12.attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
103 |
+
"transformer.h.12.attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
104 |
+
"transformer.h.12.block_sparse_moe.experts.0.fc_in.bias": "model-00004-of-00007.safetensors",
|
105 |
+
"transformer.h.12.block_sparse_moe.experts.0.fc_in.weight": "model-00004-of-00007.safetensors",
|
106 |
+
"transformer.h.12.block_sparse_moe.experts.0.fc_out.bias": "model-00004-of-00007.safetensors",
|
107 |
+
"transformer.h.12.block_sparse_moe.experts.0.fc_out.weight": "model-00004-of-00007.safetensors",
|
108 |
+
"transformer.h.12.block_sparse_moe.experts.1.fc_in.bias": "model-00004-of-00007.safetensors",
|
109 |
+
"transformer.h.12.block_sparse_moe.experts.1.fc_in.weight": "model-00004-of-00007.safetensors",
|
110 |
+
"transformer.h.12.block_sparse_moe.experts.1.fc_out.bias": "model-00004-of-00007.safetensors",
|
111 |
+
"transformer.h.12.block_sparse_moe.experts.1.fc_out.weight": "model-00004-of-00007.safetensors",
|
112 |
+
"transformer.h.12.block_sparse_moe.experts.2.fc_in.bias": "model-00004-of-00007.safetensors",
|
113 |
+
"transformer.h.12.block_sparse_moe.experts.2.fc_in.weight": "model-00004-of-00007.safetensors",
|
114 |
+
"transformer.h.12.block_sparse_moe.experts.2.fc_out.bias": "model-00004-of-00007.safetensors",
|
115 |
+
"transformer.h.12.block_sparse_moe.experts.2.fc_out.weight": "model-00004-of-00007.safetensors",
|
116 |
+
"transformer.h.12.block_sparse_moe.experts.3.fc_in.bias": "model-00004-of-00007.safetensors",
|
117 |
+
"transformer.h.12.block_sparse_moe.experts.3.fc_in.weight": "model-00004-of-00007.safetensors",
|
118 |
+
"transformer.h.12.block_sparse_moe.experts.3.fc_out.bias": "model-00004-of-00007.safetensors",
|
119 |
+
"transformer.h.12.block_sparse_moe.experts.3.fc_out.weight": "model-00004-of-00007.safetensors",
|
120 |
+
"transformer.h.12.block_sparse_moe.gate.weight": "model-00004-of-00007.safetensors",
|
121 |
+
"transformer.h.12.ln_1.bias": "model-00003-of-00007.safetensors",
|
122 |
+
"transformer.h.12.ln_1.weight": "model-00003-of-00007.safetensors",
|
123 |
+
"transformer.h.13.attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
124 |
+
"transformer.h.13.attn.out_proj.weight": "model-00004-of-00007.safetensors",
|
125 |
+
"transformer.h.13.attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
126 |
+
"transformer.h.13.attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
127 |
+
"transformer.h.13.block_sparse_moe.experts.0.fc_in.bias": "model-00004-of-00007.safetensors",
|
128 |
+
"transformer.h.13.block_sparse_moe.experts.0.fc_in.weight": "model-00004-of-00007.safetensors",
|
129 |
+
"transformer.h.13.block_sparse_moe.experts.0.fc_out.bias": "model-00004-of-00007.safetensors",
|
130 |
+
"transformer.h.13.block_sparse_moe.experts.0.fc_out.weight": "model-00004-of-00007.safetensors",
|
131 |
+
"transformer.h.13.block_sparse_moe.experts.1.fc_in.bias": "model-00004-of-00007.safetensors",
|
132 |
+
"transformer.h.13.block_sparse_moe.experts.1.fc_in.weight": "model-00004-of-00007.safetensors",
|
133 |
+
"transformer.h.13.block_sparse_moe.experts.1.fc_out.bias": "model-00004-of-00007.safetensors",
|
134 |
+
"transformer.h.13.block_sparse_moe.experts.1.fc_out.weight": "model-00004-of-00007.safetensors",
|
135 |
+
"transformer.h.13.block_sparse_moe.experts.2.fc_in.bias": "model-00004-of-00007.safetensors",
|
136 |
+
"transformer.h.13.block_sparse_moe.experts.2.fc_in.weight": "model-00004-of-00007.safetensors",
|
137 |
+
"transformer.h.13.block_sparse_moe.experts.2.fc_out.bias": "model-00004-of-00007.safetensors",
|
138 |
+
"transformer.h.13.block_sparse_moe.experts.2.fc_out.weight": "model-00004-of-00007.safetensors",
|
139 |
+
"transformer.h.13.block_sparse_moe.experts.3.fc_in.bias": "model-00004-of-00007.safetensors",
|
140 |
+
"transformer.h.13.block_sparse_moe.experts.3.fc_in.weight": "model-00004-of-00007.safetensors",
|
141 |
+
"transformer.h.13.block_sparse_moe.experts.3.fc_out.bias": "model-00004-of-00007.safetensors",
|
142 |
+
"transformer.h.13.block_sparse_moe.experts.3.fc_out.weight": "model-00004-of-00007.safetensors",
|
143 |
+
"transformer.h.13.block_sparse_moe.gate.weight": "model-00004-of-00007.safetensors",
|
144 |
+
"transformer.h.13.ln_1.bias": "model-00004-of-00007.safetensors",
|
145 |
+
"transformer.h.13.ln_1.weight": "model-00004-of-00007.safetensors",
|
146 |
+
"transformer.h.14.attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
147 |
+
"transformer.h.14.attn.out_proj.weight": "model-00004-of-00007.safetensors",
|
148 |
+
"transformer.h.14.attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
149 |
+
"transformer.h.14.attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
150 |
+
"transformer.h.14.block_sparse_moe.experts.0.fc_in.bias": "model-00004-of-00007.safetensors",
|
151 |
+
"transformer.h.14.block_sparse_moe.experts.0.fc_in.weight": "model-00004-of-00007.safetensors",
|
152 |
+
"transformer.h.14.block_sparse_moe.experts.0.fc_out.bias": "model-00004-of-00007.safetensors",
|
153 |
+
"transformer.h.14.block_sparse_moe.experts.0.fc_out.weight": "model-00004-of-00007.safetensors",
|
154 |
+
"transformer.h.14.block_sparse_moe.experts.1.fc_in.bias": "model-00004-of-00007.safetensors",
|
155 |
+
"transformer.h.14.block_sparse_moe.experts.1.fc_in.weight": "model-00004-of-00007.safetensors",
|
156 |
+
"transformer.h.14.block_sparse_moe.experts.1.fc_out.bias": "model-00004-of-00007.safetensors",
|
157 |
+
"transformer.h.14.block_sparse_moe.experts.1.fc_out.weight": "model-00004-of-00007.safetensors",
|
158 |
+
"transformer.h.14.block_sparse_moe.experts.2.fc_in.bias": "model-00004-of-00007.safetensors",
|
159 |
+
"transformer.h.14.block_sparse_moe.experts.2.fc_in.weight": "model-00004-of-00007.safetensors",
|
160 |
+
"transformer.h.14.block_sparse_moe.experts.2.fc_out.bias": "model-00004-of-00007.safetensors",
|
161 |
+
"transformer.h.14.block_sparse_moe.experts.2.fc_out.weight": "model-00004-of-00007.safetensors",
|
162 |
+
"transformer.h.14.block_sparse_moe.experts.3.fc_in.bias": "model-00004-of-00007.safetensors",
|
163 |
+
"transformer.h.14.block_sparse_moe.experts.3.fc_in.weight": "model-00004-of-00007.safetensors",
|
164 |
+
"transformer.h.14.block_sparse_moe.experts.3.fc_out.bias": "model-00004-of-00007.safetensors",
|
165 |
+
"transformer.h.14.block_sparse_moe.experts.3.fc_out.weight": "model-00004-of-00007.safetensors",
|
166 |
+
"transformer.h.14.block_sparse_moe.gate.weight": "model-00004-of-00007.safetensors",
|
167 |
+
"transformer.h.14.ln_1.bias": "model-00004-of-00007.safetensors",
|
168 |
+
"transformer.h.14.ln_1.weight": "model-00004-of-00007.safetensors",
|
169 |
+
"transformer.h.15.attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
170 |
+
"transformer.h.15.attn.out_proj.weight": "model-00004-of-00007.safetensors",
|
171 |
+
"transformer.h.15.attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
172 |
+
"transformer.h.15.attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
173 |
+
"transformer.h.15.block_sparse_moe.experts.0.fc_in.bias": "model-00004-of-00007.safetensors",
|
174 |
+
"transformer.h.15.block_sparse_moe.experts.0.fc_in.weight": "model-00004-of-00007.safetensors",
|
175 |
+
"transformer.h.15.block_sparse_moe.experts.0.fc_out.bias": "model-00004-of-00007.safetensors",
|
176 |
+
"transformer.h.15.block_sparse_moe.experts.0.fc_out.weight": "model-00004-of-00007.safetensors",
|
177 |
+
"transformer.h.15.block_sparse_moe.experts.1.fc_in.bias": "model-00004-of-00007.safetensors",
|
178 |
+
"transformer.h.15.block_sparse_moe.experts.1.fc_in.weight": "model-00004-of-00007.safetensors",
|
179 |
+
"transformer.h.15.block_sparse_moe.experts.1.fc_out.bias": "model-00004-of-00007.safetensors",
|
180 |
+
"transformer.h.15.block_sparse_moe.experts.1.fc_out.weight": "model-00004-of-00007.safetensors",
|
181 |
+
"transformer.h.15.block_sparse_moe.experts.2.fc_in.bias": "model-00004-of-00007.safetensors",
|
182 |
+
"transformer.h.15.block_sparse_moe.experts.2.fc_in.weight": "model-00004-of-00007.safetensors",
|
183 |
+
"transformer.h.15.block_sparse_moe.experts.2.fc_out.bias": "model-00004-of-00007.safetensors",
|
184 |
+
"transformer.h.15.block_sparse_moe.experts.2.fc_out.weight": "model-00004-of-00007.safetensors",
|
185 |
+
"transformer.h.15.block_sparse_moe.experts.3.fc_in.bias": "model-00004-of-00007.safetensors",
|
186 |
+
"transformer.h.15.block_sparse_moe.experts.3.fc_in.weight": "model-00004-of-00007.safetensors",
|
187 |
+
"transformer.h.15.block_sparse_moe.experts.3.fc_out.bias": "model-00004-of-00007.safetensors",
|
188 |
+
"transformer.h.15.block_sparse_moe.experts.3.fc_out.weight": "model-00004-of-00007.safetensors",
|
189 |
+
"transformer.h.15.block_sparse_moe.gate.weight": "model-00004-of-00007.safetensors",
|
190 |
+
"transformer.h.15.ln_1.bias": "model-00004-of-00007.safetensors",
|
191 |
+
"transformer.h.15.ln_1.weight": "model-00004-of-00007.safetensors",
|
192 |
+
"transformer.h.16.attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
193 |
+
"transformer.h.16.attn.out_proj.weight": "model-00004-of-00007.safetensors",
|
194 |
+
"transformer.h.16.attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
195 |
+
"transformer.h.16.attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
196 |
+
"transformer.h.16.block_sparse_moe.experts.0.fc_in.bias": "model-00005-of-00007.safetensors",
|
197 |
+
"transformer.h.16.block_sparse_moe.experts.0.fc_in.weight": "model-00005-of-00007.safetensors",
|
198 |
+
"transformer.h.16.block_sparse_moe.experts.0.fc_out.bias": "model-00005-of-00007.safetensors",
|
199 |
+
"transformer.h.16.block_sparse_moe.experts.0.fc_out.weight": "model-00005-of-00007.safetensors",
|
200 |
+
"transformer.h.16.block_sparse_moe.experts.1.fc_in.bias": "model-00005-of-00007.safetensors",
|
201 |
+
"transformer.h.16.block_sparse_moe.experts.1.fc_in.weight": "model-00005-of-00007.safetensors",
|
202 |
+
"transformer.h.16.block_sparse_moe.experts.1.fc_out.bias": "model-00005-of-00007.safetensors",
|
203 |
+
"transformer.h.16.block_sparse_moe.experts.1.fc_out.weight": "model-00005-of-00007.safetensors",
|
204 |
+
"transformer.h.16.block_sparse_moe.experts.2.fc_in.bias": "model-00005-of-00007.safetensors",
|
205 |
+
"transformer.h.16.block_sparse_moe.experts.2.fc_in.weight": "model-00005-of-00007.safetensors",
|
206 |
+
"transformer.h.16.block_sparse_moe.experts.2.fc_out.bias": "model-00005-of-00007.safetensors",
|
207 |
+
"transformer.h.16.block_sparse_moe.experts.2.fc_out.weight": "model-00005-of-00007.safetensors",
|
208 |
+
"transformer.h.16.block_sparse_moe.experts.3.fc_in.bias": "model-00005-of-00007.safetensors",
|
209 |
+
"transformer.h.16.block_sparse_moe.experts.3.fc_in.weight": "model-00005-of-00007.safetensors",
|
210 |
+
"transformer.h.16.block_sparse_moe.experts.3.fc_out.bias": "model-00005-of-00007.safetensors",
|
211 |
+
"transformer.h.16.block_sparse_moe.experts.3.fc_out.weight": "model-00005-of-00007.safetensors",
|
212 |
+
"transformer.h.16.block_sparse_moe.gate.weight": "model-00004-of-00007.safetensors",
|
213 |
+
"transformer.h.16.ln_1.bias": "model-00004-of-00007.safetensors",
|
214 |
+
"transformer.h.16.ln_1.weight": "model-00004-of-00007.safetensors",
|
215 |
+
"transformer.h.17.attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
216 |
+
"transformer.h.17.attn.out_proj.weight": "model-00005-of-00007.safetensors",
|
217 |
+
"transformer.h.17.attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
218 |
+
"transformer.h.17.attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
219 |
+
"transformer.h.17.block_sparse_moe.experts.0.fc_in.bias": "model-00005-of-00007.safetensors",
|
220 |
+
"transformer.h.17.block_sparse_moe.experts.0.fc_in.weight": "model-00005-of-00007.safetensors",
|
221 |
+
"transformer.h.17.block_sparse_moe.experts.0.fc_out.bias": "model-00005-of-00007.safetensors",
|
222 |
+
"transformer.h.17.block_sparse_moe.experts.0.fc_out.weight": "model-00005-of-00007.safetensors",
|
223 |
+
"transformer.h.17.block_sparse_moe.experts.1.fc_in.bias": "model-00005-of-00007.safetensors",
|
224 |
+
"transformer.h.17.block_sparse_moe.experts.1.fc_in.weight": "model-00005-of-00007.safetensors",
|
225 |
+
"transformer.h.17.block_sparse_moe.experts.1.fc_out.bias": "model-00005-of-00007.safetensors",
|
226 |
+
"transformer.h.17.block_sparse_moe.experts.1.fc_out.weight": "model-00005-of-00007.safetensors",
|
227 |
+
"transformer.h.17.block_sparse_moe.experts.2.fc_in.bias": "model-00005-of-00007.safetensors",
|
228 |
+
"transformer.h.17.block_sparse_moe.experts.2.fc_in.weight": "model-00005-of-00007.safetensors",
|
229 |
+
"transformer.h.17.block_sparse_moe.experts.2.fc_out.bias": "model-00005-of-00007.safetensors",
|
230 |
+
"transformer.h.17.block_sparse_moe.experts.2.fc_out.weight": "model-00005-of-00007.safetensors",
|
231 |
+
"transformer.h.17.block_sparse_moe.experts.3.fc_in.bias": "model-00005-of-00007.safetensors",
|
232 |
+
"transformer.h.17.block_sparse_moe.experts.3.fc_in.weight": "model-00005-of-00007.safetensors",
|
233 |
+
"transformer.h.17.block_sparse_moe.experts.3.fc_out.bias": "model-00005-of-00007.safetensors",
|
234 |
+
"transformer.h.17.block_sparse_moe.experts.3.fc_out.weight": "model-00005-of-00007.safetensors",
|
235 |
+
"transformer.h.17.block_sparse_moe.gate.weight": "model-00005-of-00007.safetensors",
|
236 |
+
"transformer.h.17.ln_1.bias": "model-00005-of-00007.safetensors",
|
237 |
+
"transformer.h.17.ln_1.weight": "model-00005-of-00007.safetensors",
|
238 |
+
"transformer.h.18.attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
239 |
+
"transformer.h.18.attn.out_proj.weight": "model-00005-of-00007.safetensors",
|
240 |
+
"transformer.h.18.attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
241 |
+
"transformer.h.18.attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
242 |
+
"transformer.h.18.block_sparse_moe.experts.0.fc_in.bias": "model-00005-of-00007.safetensors",
|
243 |
+
"transformer.h.18.block_sparse_moe.experts.0.fc_in.weight": "model-00005-of-00007.safetensors",
|
244 |
+
"transformer.h.18.block_sparse_moe.experts.0.fc_out.bias": "model-00005-of-00007.safetensors",
|
245 |
+
"transformer.h.18.block_sparse_moe.experts.0.fc_out.weight": "model-00005-of-00007.safetensors",
|
246 |
+
"transformer.h.18.block_sparse_moe.experts.1.fc_in.bias": "model-00005-of-00007.safetensors",
|
247 |
+
"transformer.h.18.block_sparse_moe.experts.1.fc_in.weight": "model-00005-of-00007.safetensors",
|
248 |
+
"transformer.h.18.block_sparse_moe.experts.1.fc_out.bias": "model-00005-of-00007.safetensors",
|
249 |
+
"transformer.h.18.block_sparse_moe.experts.1.fc_out.weight": "model-00005-of-00007.safetensors",
|
250 |
+
"transformer.h.18.block_sparse_moe.experts.2.fc_in.bias": "model-00005-of-00007.safetensors",
|
251 |
+
"transformer.h.18.block_sparse_moe.experts.2.fc_in.weight": "model-00005-of-00007.safetensors",
|
252 |
+
"transformer.h.18.block_sparse_moe.experts.2.fc_out.bias": "model-00005-of-00007.safetensors",
|
253 |
+
"transformer.h.18.block_sparse_moe.experts.2.fc_out.weight": "model-00005-of-00007.safetensors",
|
254 |
+
"transformer.h.18.block_sparse_moe.experts.3.fc_in.bias": "model-00005-of-00007.safetensors",
|
255 |
+
"transformer.h.18.block_sparse_moe.experts.3.fc_in.weight": "model-00005-of-00007.safetensors",
|
256 |
+
"transformer.h.18.block_sparse_moe.experts.3.fc_out.bias": "model-00005-of-00007.safetensors",
|
257 |
+
"transformer.h.18.block_sparse_moe.experts.3.fc_out.weight": "model-00005-of-00007.safetensors",
|
258 |
+
"transformer.h.18.block_sparse_moe.gate.weight": "model-00005-of-00007.safetensors",
|
259 |
+
"transformer.h.18.ln_1.bias": "model-00005-of-00007.safetensors",
|
260 |
+
"transformer.h.18.ln_1.weight": "model-00005-of-00007.safetensors",
|
261 |
+
"transformer.h.19.attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
262 |
+
"transformer.h.19.attn.out_proj.weight": "model-00005-of-00007.safetensors",
|
263 |
+
"transformer.h.19.attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
264 |
+
"transformer.h.19.attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
265 |
+
"transformer.h.19.block_sparse_moe.experts.0.fc_in.bias": "model-00005-of-00007.safetensors",
|
266 |
+
"transformer.h.19.block_sparse_moe.experts.0.fc_in.weight": "model-00005-of-00007.safetensors",
|
267 |
+
"transformer.h.19.block_sparse_moe.experts.0.fc_out.bias": "model-00005-of-00007.safetensors",
|
268 |
+
"transformer.h.19.block_sparse_moe.experts.0.fc_out.weight": "model-00005-of-00007.safetensors",
|
269 |
+
"transformer.h.19.block_sparse_moe.experts.1.fc_in.bias": "model-00005-of-00007.safetensors",
|
270 |
+
"transformer.h.19.block_sparse_moe.experts.1.fc_in.weight": "model-00005-of-00007.safetensors",
|
271 |
+
"transformer.h.19.block_sparse_moe.experts.1.fc_out.bias": "model-00005-of-00007.safetensors",
|
272 |
+
"transformer.h.19.block_sparse_moe.experts.1.fc_out.weight": "model-00005-of-00007.safetensors",
|
273 |
+
"transformer.h.19.block_sparse_moe.experts.2.fc_in.bias": "model-00005-of-00007.safetensors",
|
274 |
+
"transformer.h.19.block_sparse_moe.experts.2.fc_in.weight": "model-00005-of-00007.safetensors",
|
275 |
+
"transformer.h.19.block_sparse_moe.experts.2.fc_out.bias": "model-00005-of-00007.safetensors",
|
276 |
+
"transformer.h.19.block_sparse_moe.experts.2.fc_out.weight": "model-00005-of-00007.safetensors",
|
277 |
+
"transformer.h.19.block_sparse_moe.experts.3.fc_in.bias": "model-00005-of-00007.safetensors",
|
278 |
+
"transformer.h.19.block_sparse_moe.experts.3.fc_in.weight": "model-00005-of-00007.safetensors",
|
279 |
+
"transformer.h.19.block_sparse_moe.experts.3.fc_out.bias": "model-00005-of-00007.safetensors",
|
280 |
+
"transformer.h.19.block_sparse_moe.experts.3.fc_out.weight": "model-00005-of-00007.safetensors",
|
281 |
+
"transformer.h.19.block_sparse_moe.gate.weight": "model-00005-of-00007.safetensors",
|
282 |
+
"transformer.h.19.ln_1.bias": "model-00005-of-00007.safetensors",
|
283 |
+
"transformer.h.19.ln_1.weight": "model-00005-of-00007.safetensors",
|
284 |
+
"transformer.h.2.attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
285 |
+
"transformer.h.2.attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
286 |
+
"transformer.h.2.attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
287 |
+
"transformer.h.2.attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
288 |
+
"transformer.h.2.block_sparse_moe.experts.0.fc_in.bias": "model-00001-of-00007.safetensors",
|
289 |
+
"transformer.h.2.block_sparse_moe.experts.0.fc_in.weight": "model-00001-of-00007.safetensors",
|
290 |
+
"transformer.h.2.block_sparse_moe.experts.0.fc_out.bias": "model-00001-of-00007.safetensors",
|
291 |
+
"transformer.h.2.block_sparse_moe.experts.0.fc_out.weight": "model-00001-of-00007.safetensors",
|
292 |
+
"transformer.h.2.block_sparse_moe.experts.1.fc_in.bias": "model-00001-of-00007.safetensors",
|
293 |
+
"transformer.h.2.block_sparse_moe.experts.1.fc_in.weight": "model-00001-of-00007.safetensors",
|
294 |
+
"transformer.h.2.block_sparse_moe.experts.1.fc_out.bias": "model-00001-of-00007.safetensors",
|
295 |
+
"transformer.h.2.block_sparse_moe.experts.1.fc_out.weight": "model-00001-of-00007.safetensors",
|
296 |
+
"transformer.h.2.block_sparse_moe.experts.2.fc_in.bias": "model-00001-of-00007.safetensors",
|
297 |
+
"transformer.h.2.block_sparse_moe.experts.2.fc_in.weight": "model-00001-of-00007.safetensors",
|
298 |
+
"transformer.h.2.block_sparse_moe.experts.2.fc_out.bias": "model-00001-of-00007.safetensors",
|
299 |
+
"transformer.h.2.block_sparse_moe.experts.2.fc_out.weight": "model-00001-of-00007.safetensors",
|
300 |
+
"transformer.h.2.block_sparse_moe.experts.3.fc_in.bias": "model-00001-of-00007.safetensors",
|
301 |
+
"transformer.h.2.block_sparse_moe.experts.3.fc_in.weight": "model-00001-of-00007.safetensors",
|
302 |
+
"transformer.h.2.block_sparse_moe.experts.3.fc_out.bias": "model-00001-of-00007.safetensors",
|
303 |
+
"transformer.h.2.block_sparse_moe.experts.3.fc_out.weight": "model-00001-of-00007.safetensors",
|
304 |
+
"transformer.h.2.block_sparse_moe.gate.weight": "model-00001-of-00007.safetensors",
|
305 |
+
"transformer.h.2.ln_1.bias": "model-00001-of-00007.safetensors",
|
306 |
+
"transformer.h.2.ln_1.weight": "model-00001-of-00007.safetensors",
|
307 |
+
"transformer.h.20.attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
308 |
+
"transformer.h.20.attn.out_proj.weight": "model-00005-of-00007.safetensors",
|
309 |
+
"transformer.h.20.attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
310 |
+
"transformer.h.20.attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
311 |
+
"transformer.h.20.block_sparse_moe.experts.0.fc_in.bias": "model-00005-of-00007.safetensors",
|
312 |
+
"transformer.h.20.block_sparse_moe.experts.0.fc_in.weight": "model-00005-of-00007.safetensors",
|
313 |
+
"transformer.h.20.block_sparse_moe.experts.0.fc_out.bias": "model-00006-of-00007.safetensors",
|
314 |
+
"transformer.h.20.block_sparse_moe.experts.0.fc_out.weight": "model-00006-of-00007.safetensors",
|
315 |
+
"transformer.h.20.block_sparse_moe.experts.1.fc_in.bias": "model-00006-of-00007.safetensors",
|
316 |
+
"transformer.h.20.block_sparse_moe.experts.1.fc_in.weight": "model-00006-of-00007.safetensors",
|
317 |
+
"transformer.h.20.block_sparse_moe.experts.1.fc_out.bias": "model-00006-of-00007.safetensors",
|
318 |
+
"transformer.h.20.block_sparse_moe.experts.1.fc_out.weight": "model-00006-of-00007.safetensors",
|
319 |
+
"transformer.h.20.block_sparse_moe.experts.2.fc_in.bias": "model-00006-of-00007.safetensors",
|
320 |
+
"transformer.h.20.block_sparse_moe.experts.2.fc_in.weight": "model-00006-of-00007.safetensors",
|
321 |
+
"transformer.h.20.block_sparse_moe.experts.2.fc_out.bias": "model-00006-of-00007.safetensors",
|
322 |
+
"transformer.h.20.block_sparse_moe.experts.2.fc_out.weight": "model-00006-of-00007.safetensors",
|
323 |
+
"transformer.h.20.block_sparse_moe.experts.3.fc_in.bias": "model-00006-of-00007.safetensors",
|
324 |
+
"transformer.h.20.block_sparse_moe.experts.3.fc_in.weight": "model-00006-of-00007.safetensors",
|
325 |
+
"transformer.h.20.block_sparse_moe.experts.3.fc_out.bias": "model-00006-of-00007.safetensors",
|
326 |
+
"transformer.h.20.block_sparse_moe.experts.3.fc_out.weight": "model-00006-of-00007.safetensors",
|
327 |
+
"transformer.h.20.block_sparse_moe.gate.weight": "model-00005-of-00007.safetensors",
|
328 |
+
"transformer.h.20.ln_1.bias": "model-00005-of-00007.safetensors",
|
329 |
+
"transformer.h.20.ln_1.weight": "model-00005-of-00007.safetensors",
|
330 |
+
"transformer.h.21.attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
331 |
+
"transformer.h.21.attn.out_proj.weight": "model-00006-of-00007.safetensors",
|
332 |
+
"transformer.h.21.attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
333 |
+
"transformer.h.21.attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
334 |
+
"transformer.h.21.block_sparse_moe.experts.0.fc_in.bias": "model-00006-of-00007.safetensors",
|
335 |
+
"transformer.h.21.block_sparse_moe.experts.0.fc_in.weight": "model-00006-of-00007.safetensors",
|
336 |
+
"transformer.h.21.block_sparse_moe.experts.0.fc_out.bias": "model-00006-of-00007.safetensors",
|
337 |
+
"transformer.h.21.block_sparse_moe.experts.0.fc_out.weight": "model-00006-of-00007.safetensors",
|
338 |
+
"transformer.h.21.block_sparse_moe.experts.1.fc_in.bias": "model-00006-of-00007.safetensors",
|
339 |
+
"transformer.h.21.block_sparse_moe.experts.1.fc_in.weight": "model-00006-of-00007.safetensors",
|
340 |
+
"transformer.h.21.block_sparse_moe.experts.1.fc_out.bias": "model-00006-of-00007.safetensors",
|
341 |
+
"transformer.h.21.block_sparse_moe.experts.1.fc_out.weight": "model-00006-of-00007.safetensors",
|
342 |
+
"transformer.h.21.block_sparse_moe.experts.2.fc_in.bias": "model-00006-of-00007.safetensors",
|
343 |
+
"transformer.h.21.block_sparse_moe.experts.2.fc_in.weight": "model-00006-of-00007.safetensors",
|
344 |
+
"transformer.h.21.block_sparse_moe.experts.2.fc_out.bias": "model-00006-of-00007.safetensors",
|
345 |
+
"transformer.h.21.block_sparse_moe.experts.2.fc_out.weight": "model-00006-of-00007.safetensors",
|
346 |
+
"transformer.h.21.block_sparse_moe.experts.3.fc_in.bias": "model-00006-of-00007.safetensors",
|
347 |
+
"transformer.h.21.block_sparse_moe.experts.3.fc_in.weight": "model-00006-of-00007.safetensors",
|
348 |
+
"transformer.h.21.block_sparse_moe.experts.3.fc_out.bias": "model-00006-of-00007.safetensors",
|
349 |
+
"transformer.h.21.block_sparse_moe.experts.3.fc_out.weight": "model-00006-of-00007.safetensors",
|
350 |
+
"transformer.h.21.block_sparse_moe.gate.weight": "model-00006-of-00007.safetensors",
|
351 |
+
"transformer.h.21.ln_1.bias": "model-00006-of-00007.safetensors",
|
352 |
+
"transformer.h.21.ln_1.weight": "model-00006-of-00007.safetensors",
|
353 |
+
"transformer.h.22.attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
354 |
+
"transformer.h.22.attn.out_proj.weight": "model-00006-of-00007.safetensors",
|
355 |
+
"transformer.h.22.attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
356 |
+
"transformer.h.22.attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
357 |
+
"transformer.h.22.block_sparse_moe.experts.0.fc_in.bias": "model-00006-of-00007.safetensors",
|
358 |
+
"transformer.h.22.block_sparse_moe.experts.0.fc_in.weight": "model-00006-of-00007.safetensors",
|
359 |
+
"transformer.h.22.block_sparse_moe.experts.0.fc_out.bias": "model-00006-of-00007.safetensors",
|
360 |
+
"transformer.h.22.block_sparse_moe.experts.0.fc_out.weight": "model-00006-of-00007.safetensors",
|
361 |
+
"transformer.h.22.block_sparse_moe.experts.1.fc_in.bias": "model-00006-of-00007.safetensors",
|
362 |
+
"transformer.h.22.block_sparse_moe.experts.1.fc_in.weight": "model-00006-of-00007.safetensors",
|
363 |
+
"transformer.h.22.block_sparse_moe.experts.1.fc_out.bias": "model-00006-of-00007.safetensors",
|
364 |
+
"transformer.h.22.block_sparse_moe.experts.1.fc_out.weight": "model-00006-of-00007.safetensors",
|
365 |
+
"transformer.h.22.block_sparse_moe.experts.2.fc_in.bias": "model-00006-of-00007.safetensors",
|
366 |
+
"transformer.h.22.block_sparse_moe.experts.2.fc_in.weight": "model-00006-of-00007.safetensors",
|
367 |
+
"transformer.h.22.block_sparse_moe.experts.2.fc_out.bias": "model-00006-of-00007.safetensors",
|
368 |
+
"transformer.h.22.block_sparse_moe.experts.2.fc_out.weight": "model-00006-of-00007.safetensors",
|
369 |
+
"transformer.h.22.block_sparse_moe.experts.3.fc_in.bias": "model-00006-of-00007.safetensors",
|
370 |
+
"transformer.h.22.block_sparse_moe.experts.3.fc_in.weight": "model-00006-of-00007.safetensors",
|
371 |
+
"transformer.h.22.block_sparse_moe.experts.3.fc_out.bias": "model-00006-of-00007.safetensors",
|
372 |
+
"transformer.h.22.block_sparse_moe.experts.3.fc_out.weight": "model-00006-of-00007.safetensors",
|
373 |
+
"transformer.h.22.block_sparse_moe.gate.weight": "model-00006-of-00007.safetensors",
|
374 |
+
"transformer.h.22.ln_1.bias": "model-00006-of-00007.safetensors",
|
375 |
+
"transformer.h.22.ln_1.weight": "model-00006-of-00007.safetensors",
|
376 |
+
"transformer.h.23.attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
377 |
+
"transformer.h.23.attn.out_proj.weight": "model-00006-of-00007.safetensors",
|
378 |
+
"transformer.h.23.attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
379 |
+
"transformer.h.23.attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
380 |
+
"transformer.h.23.block_sparse_moe.experts.0.fc_in.bias": "model-00006-of-00007.safetensors",
|
381 |
+
"transformer.h.23.block_sparse_moe.experts.0.fc_in.weight": "model-00006-of-00007.safetensors",
|
382 |
+
"transformer.h.23.block_sparse_moe.experts.0.fc_out.bias": "model-00006-of-00007.safetensors",
|
383 |
+
"transformer.h.23.block_sparse_moe.experts.0.fc_out.weight": "model-00006-of-00007.safetensors",
|
384 |
+
"transformer.h.23.block_sparse_moe.experts.1.fc_in.bias": "model-00006-of-00007.safetensors",
|
385 |
+
"transformer.h.23.block_sparse_moe.experts.1.fc_in.weight": "model-00006-of-00007.safetensors",
|
386 |
+
"transformer.h.23.block_sparse_moe.experts.1.fc_out.bias": "model-00006-of-00007.safetensors",
|
387 |
+
"transformer.h.23.block_sparse_moe.experts.1.fc_out.weight": "model-00006-of-00007.safetensors",
|
388 |
+
"transformer.h.23.block_sparse_moe.experts.2.fc_in.bias": "model-00006-of-00007.safetensors",
|
389 |
+
"transformer.h.23.block_sparse_moe.experts.2.fc_in.weight": "model-00006-of-00007.safetensors",
|
390 |
+
"transformer.h.23.block_sparse_moe.experts.2.fc_out.bias": "model-00006-of-00007.safetensors",
|
391 |
+
"transformer.h.23.block_sparse_moe.experts.2.fc_out.weight": "model-00006-of-00007.safetensors",
|
392 |
+
"transformer.h.23.block_sparse_moe.experts.3.fc_in.bias": "model-00006-of-00007.safetensors",
|
393 |
+
"transformer.h.23.block_sparse_moe.experts.3.fc_in.weight": "model-00006-of-00007.safetensors",
|
394 |
+
"transformer.h.23.block_sparse_moe.experts.3.fc_out.bias": "model-00006-of-00007.safetensors",
|
395 |
+
"transformer.h.23.block_sparse_moe.experts.3.fc_out.weight": "model-00006-of-00007.safetensors",
|
396 |
+
"transformer.h.23.block_sparse_moe.gate.weight": "model-00006-of-00007.safetensors",
|
397 |
+
"transformer.h.23.ln_1.bias": "model-00006-of-00007.safetensors",
|
398 |
+
"transformer.h.23.ln_1.weight": "model-00006-of-00007.safetensors",
|
399 |
+
"transformer.h.24.attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
400 |
+
"transformer.h.24.attn.out_proj.weight": "model-00006-of-00007.safetensors",
|
401 |
+
"transformer.h.24.attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
402 |
+
"transformer.h.24.attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
403 |
+
"transformer.h.24.block_sparse_moe.experts.0.fc_in.bias": "model-00006-of-00007.safetensors",
|
404 |
+
"transformer.h.24.block_sparse_moe.experts.0.fc_in.weight": "model-00006-of-00007.safetensors",
|
405 |
+
"transformer.h.24.block_sparse_moe.experts.0.fc_out.bias": "model-00006-of-00007.safetensors",
|
406 |
+
"transformer.h.24.block_sparse_moe.experts.0.fc_out.weight": "model-00006-of-00007.safetensors",
|
407 |
+
"transformer.h.24.block_sparse_moe.experts.1.fc_in.bias": "model-00007-of-00007.safetensors",
|
408 |
+
"transformer.h.24.block_sparse_moe.experts.1.fc_in.weight": "model-00007-of-00007.safetensors",
|
409 |
+
"transformer.h.24.block_sparse_moe.experts.1.fc_out.bias": "model-00007-of-00007.safetensors",
|
410 |
+
"transformer.h.24.block_sparse_moe.experts.1.fc_out.weight": "model-00007-of-00007.safetensors",
|
411 |
+
"transformer.h.24.block_sparse_moe.experts.2.fc_in.bias": "model-00007-of-00007.safetensors",
|
412 |
+
"transformer.h.24.block_sparse_moe.experts.2.fc_in.weight": "model-00007-of-00007.safetensors",
|
413 |
+
"transformer.h.24.block_sparse_moe.experts.2.fc_out.bias": "model-00007-of-00007.safetensors",
|
414 |
+
"transformer.h.24.block_sparse_moe.experts.2.fc_out.weight": "model-00007-of-00007.safetensors",
|
415 |
+
"transformer.h.24.block_sparse_moe.experts.3.fc_in.bias": "model-00007-of-00007.safetensors",
|
416 |
+
"transformer.h.24.block_sparse_moe.experts.3.fc_in.weight": "model-00007-of-00007.safetensors",
|
417 |
+
"transformer.h.24.block_sparse_moe.experts.3.fc_out.bias": "model-00007-of-00007.safetensors",
|
418 |
+
"transformer.h.24.block_sparse_moe.experts.3.fc_out.weight": "model-00007-of-00007.safetensors",
|
419 |
+
"transformer.h.24.block_sparse_moe.gate.weight": "model-00006-of-00007.safetensors",
|
420 |
+
"transformer.h.24.ln_1.bias": "model-00006-of-00007.safetensors",
|
421 |
+
"transformer.h.24.ln_1.weight": "model-00006-of-00007.safetensors",
|
422 |
+
"transformer.h.25.attn.k_proj.weight": "model-00007-of-00007.safetensors",
|
423 |
+
"transformer.h.25.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
424 |
+
"transformer.h.25.attn.q_proj.weight": "model-00007-of-00007.safetensors",
|
425 |
+
"transformer.h.25.attn.v_proj.weight": "model-00007-of-00007.safetensors",
|
426 |
+
"transformer.h.25.block_sparse_moe.experts.0.fc_in.bias": "model-00007-of-00007.safetensors",
|
427 |
+
"transformer.h.25.block_sparse_moe.experts.0.fc_in.weight": "model-00007-of-00007.safetensors",
|
428 |
+
"transformer.h.25.block_sparse_moe.experts.0.fc_out.bias": "model-00007-of-00007.safetensors",
|
429 |
+
"transformer.h.25.block_sparse_moe.experts.0.fc_out.weight": "model-00007-of-00007.safetensors",
|
430 |
+
"transformer.h.25.block_sparse_moe.experts.1.fc_in.bias": "model-00007-of-00007.safetensors",
|
431 |
+
"transformer.h.25.block_sparse_moe.experts.1.fc_in.weight": "model-00007-of-00007.safetensors",
|
432 |
+
"transformer.h.25.block_sparse_moe.experts.1.fc_out.bias": "model-00007-of-00007.safetensors",
|
433 |
+
"transformer.h.25.block_sparse_moe.experts.1.fc_out.weight": "model-00007-of-00007.safetensors",
|
434 |
+
"transformer.h.25.block_sparse_moe.experts.2.fc_in.bias": "model-00007-of-00007.safetensors",
|
435 |
+
"transformer.h.25.block_sparse_moe.experts.2.fc_in.weight": "model-00007-of-00007.safetensors",
|
436 |
+
"transformer.h.25.block_sparse_moe.experts.2.fc_out.bias": "model-00007-of-00007.safetensors",
|
437 |
+
"transformer.h.25.block_sparse_moe.experts.2.fc_out.weight": "model-00007-of-00007.safetensors",
|
438 |
+
"transformer.h.25.block_sparse_moe.experts.3.fc_in.bias": "model-00007-of-00007.safetensors",
|
439 |
+
"transformer.h.25.block_sparse_moe.experts.3.fc_in.weight": "model-00007-of-00007.safetensors",
|
440 |
+
"transformer.h.25.block_sparse_moe.experts.3.fc_out.bias": "model-00007-of-00007.safetensors",
|
441 |
+
"transformer.h.25.block_sparse_moe.experts.3.fc_out.weight": "model-00007-of-00007.safetensors",
|
442 |
+
"transformer.h.25.block_sparse_moe.gate.weight": "model-00007-of-00007.safetensors",
|
443 |
+
"transformer.h.25.ln_1.bias": "model-00007-of-00007.safetensors",
|
444 |
+
"transformer.h.25.ln_1.weight": "model-00007-of-00007.safetensors",
|
445 |
+
"transformer.h.26.attn.k_proj.weight": "model-00007-of-00007.safetensors",
|
446 |
+
"transformer.h.26.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
447 |
+
"transformer.h.26.attn.q_proj.weight": "model-00007-of-00007.safetensors",
|
448 |
+
"transformer.h.26.attn.v_proj.weight": "model-00007-of-00007.safetensors",
|
449 |
+
"transformer.h.26.block_sparse_moe.experts.0.fc_in.bias": "model-00007-of-00007.safetensors",
|
450 |
+
"transformer.h.26.block_sparse_moe.experts.0.fc_in.weight": "model-00007-of-00007.safetensors",
|
451 |
+
"transformer.h.26.block_sparse_moe.experts.0.fc_out.bias": "model-00007-of-00007.safetensors",
|
452 |
+
"transformer.h.26.block_sparse_moe.experts.0.fc_out.weight": "model-00007-of-00007.safetensors",
|
453 |
+
"transformer.h.26.block_sparse_moe.experts.1.fc_in.bias": "model-00007-of-00007.safetensors",
|
454 |
+
"transformer.h.26.block_sparse_moe.experts.1.fc_in.weight": "model-00007-of-00007.safetensors",
|
455 |
+
"transformer.h.26.block_sparse_moe.experts.1.fc_out.bias": "model-00007-of-00007.safetensors",
|
456 |
+
"transformer.h.26.block_sparse_moe.experts.1.fc_out.weight": "model-00007-of-00007.safetensors",
|
457 |
+
"transformer.h.26.block_sparse_moe.experts.2.fc_in.bias": "model-00007-of-00007.safetensors",
|
458 |
+
"transformer.h.26.block_sparse_moe.experts.2.fc_in.weight": "model-00007-of-00007.safetensors",
|
459 |
+
"transformer.h.26.block_sparse_moe.experts.2.fc_out.bias": "model-00007-of-00007.safetensors",
|
460 |
+
"transformer.h.26.block_sparse_moe.experts.2.fc_out.weight": "model-00007-of-00007.safetensors",
|
461 |
+
"transformer.h.26.block_sparse_moe.experts.3.fc_in.bias": "model-00007-of-00007.safetensors",
|
462 |
+
"transformer.h.26.block_sparse_moe.experts.3.fc_in.weight": "model-00007-of-00007.safetensors",
|
463 |
+
"transformer.h.26.block_sparse_moe.experts.3.fc_out.bias": "model-00007-of-00007.safetensors",
|
464 |
+
"transformer.h.26.block_sparse_moe.experts.3.fc_out.weight": "model-00007-of-00007.safetensors",
|
465 |
+
"transformer.h.26.block_sparse_moe.gate.weight": "model-00007-of-00007.safetensors",
|
466 |
+
"transformer.h.26.ln_1.bias": "model-00007-of-00007.safetensors",
|
467 |
+
"transformer.h.26.ln_1.weight": "model-00007-of-00007.safetensors",
|
468 |
+
"transformer.h.27.attn.k_proj.weight": "model-00007-of-00007.safetensors",
|
469 |
+
"transformer.h.27.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
470 |
+
"transformer.h.27.attn.q_proj.weight": "model-00007-of-00007.safetensors",
|
471 |
+
"transformer.h.27.attn.v_proj.weight": "model-00007-of-00007.safetensors",
|
472 |
+
"transformer.h.27.block_sparse_moe.experts.0.fc_in.bias": "model-00007-of-00007.safetensors",
|
473 |
+
"transformer.h.27.block_sparse_moe.experts.0.fc_in.weight": "model-00007-of-00007.safetensors",
|
474 |
+
"transformer.h.27.block_sparse_moe.experts.0.fc_out.bias": "model-00007-of-00007.safetensors",
|
475 |
+
"transformer.h.27.block_sparse_moe.experts.0.fc_out.weight": "model-00007-of-00007.safetensors",
|
476 |
+
"transformer.h.27.block_sparse_moe.experts.1.fc_in.bias": "model-00007-of-00007.safetensors",
|
477 |
+
"transformer.h.27.block_sparse_moe.experts.1.fc_in.weight": "model-00007-of-00007.safetensors",
|
478 |
+
"transformer.h.27.block_sparse_moe.experts.1.fc_out.bias": "model-00007-of-00007.safetensors",
|
479 |
+
"transformer.h.27.block_sparse_moe.experts.1.fc_out.weight": "model-00007-of-00007.safetensors",
|
480 |
+
"transformer.h.27.block_sparse_moe.experts.2.fc_in.bias": "model-00007-of-00007.safetensors",
|
481 |
+
"transformer.h.27.block_sparse_moe.experts.2.fc_in.weight": "model-00007-of-00007.safetensors",
|
482 |
+
"transformer.h.27.block_sparse_moe.experts.2.fc_out.bias": "model-00007-of-00007.safetensors",
|
483 |
+
"transformer.h.27.block_sparse_moe.experts.2.fc_out.weight": "model-00007-of-00007.safetensors",
|
484 |
+
"transformer.h.27.block_sparse_moe.experts.3.fc_in.bias": "model-00007-of-00007.safetensors",
|
485 |
+
"transformer.h.27.block_sparse_moe.experts.3.fc_in.weight": "model-00007-of-00007.safetensors",
|
486 |
+
"transformer.h.27.block_sparse_moe.experts.3.fc_out.bias": "model-00007-of-00007.safetensors",
|
487 |
+
"transformer.h.27.block_sparse_moe.experts.3.fc_out.weight": "model-00007-of-00007.safetensors",
|
488 |
+
"transformer.h.27.block_sparse_moe.gate.weight": "model-00007-of-00007.safetensors",
|
489 |
+
"transformer.h.27.ln_1.bias": "model-00007-of-00007.safetensors",
|
490 |
+
"transformer.h.27.ln_1.weight": "model-00007-of-00007.safetensors",
|
491 |
+
"transformer.h.3.attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
492 |
+
"transformer.h.3.attn.out_proj.weight": "model-00001-of-00007.safetensors",
|
493 |
+
"transformer.h.3.attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
494 |
+
"transformer.h.3.attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
495 |
+
"transformer.h.3.block_sparse_moe.experts.0.fc_in.bias": "model-00001-of-00007.safetensors",
|
496 |
+
"transformer.h.3.block_sparse_moe.experts.0.fc_in.weight": "model-00001-of-00007.safetensors",
|
497 |
+
"transformer.h.3.block_sparse_moe.experts.0.fc_out.bias": "model-00001-of-00007.safetensors",
|
498 |
+
"transformer.h.3.block_sparse_moe.experts.0.fc_out.weight": "model-00001-of-00007.safetensors",
|
499 |
+
"transformer.h.3.block_sparse_moe.experts.1.fc_in.bias": "model-00001-of-00007.safetensors",
|
500 |
+
"transformer.h.3.block_sparse_moe.experts.1.fc_in.weight": "model-00001-of-00007.safetensors",
|
501 |
+
"transformer.h.3.block_sparse_moe.experts.1.fc_out.bias": "model-00001-of-00007.safetensors",
|
502 |
+
"transformer.h.3.block_sparse_moe.experts.1.fc_out.weight": "model-00001-of-00007.safetensors",
|
503 |
+
"transformer.h.3.block_sparse_moe.experts.2.fc_in.bias": "model-00001-of-00007.safetensors",
|
504 |
+
"transformer.h.3.block_sparse_moe.experts.2.fc_in.weight": "model-00001-of-00007.safetensors",
|
505 |
+
"transformer.h.3.block_sparse_moe.experts.2.fc_out.bias": "model-00001-of-00007.safetensors",
|
506 |
+
"transformer.h.3.block_sparse_moe.experts.2.fc_out.weight": "model-00001-of-00007.safetensors",
|
507 |
+
"transformer.h.3.block_sparse_moe.experts.3.fc_in.bias": "model-00002-of-00007.safetensors",
|
508 |
+
"transformer.h.3.block_sparse_moe.experts.3.fc_in.weight": "model-00002-of-00007.safetensors",
|
509 |
+
"transformer.h.3.block_sparse_moe.experts.3.fc_out.bias": "model-00002-of-00007.safetensors",
|
510 |
+
"transformer.h.3.block_sparse_moe.experts.3.fc_out.weight": "model-00002-of-00007.safetensors",
|
511 |
+
"transformer.h.3.block_sparse_moe.gate.weight": "model-00001-of-00007.safetensors",
|
512 |
+
"transformer.h.3.ln_1.bias": "model-00001-of-00007.safetensors",
|
513 |
+
"transformer.h.3.ln_1.weight": "model-00001-of-00007.safetensors",
|
514 |
+
"transformer.h.4.attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
515 |
+
"transformer.h.4.attn.out_proj.weight": "model-00002-of-00007.safetensors",
|
516 |
+
"transformer.h.4.attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
517 |
+
"transformer.h.4.attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
518 |
+
"transformer.h.4.block_sparse_moe.experts.0.fc_in.bias": "model-00002-of-00007.safetensors",
|
519 |
+
"transformer.h.4.block_sparse_moe.experts.0.fc_in.weight": "model-00002-of-00007.safetensors",
|
520 |
+
"transformer.h.4.block_sparse_moe.experts.0.fc_out.bias": "model-00002-of-00007.safetensors",
|
521 |
+
"transformer.h.4.block_sparse_moe.experts.0.fc_out.weight": "model-00002-of-00007.safetensors",
|
522 |
+
"transformer.h.4.block_sparse_moe.experts.1.fc_in.bias": "model-00002-of-00007.safetensors",
|
523 |
+
"transformer.h.4.block_sparse_moe.experts.1.fc_in.weight": "model-00002-of-00007.safetensors",
|
524 |
+
"transformer.h.4.block_sparse_moe.experts.1.fc_out.bias": "model-00002-of-00007.safetensors",
|
525 |
+
"transformer.h.4.block_sparse_moe.experts.1.fc_out.weight": "model-00002-of-00007.safetensors",
|
526 |
+
"transformer.h.4.block_sparse_moe.experts.2.fc_in.bias": "model-00002-of-00007.safetensors",
|
527 |
+
"transformer.h.4.block_sparse_moe.experts.2.fc_in.weight": "model-00002-of-00007.safetensors",
|
528 |
+
"transformer.h.4.block_sparse_moe.experts.2.fc_out.bias": "model-00002-of-00007.safetensors",
|
529 |
+
"transformer.h.4.block_sparse_moe.experts.2.fc_out.weight": "model-00002-of-00007.safetensors",
|
530 |
+
"transformer.h.4.block_sparse_moe.experts.3.fc_in.bias": "model-00002-of-00007.safetensors",
|
531 |
+
"transformer.h.4.block_sparse_moe.experts.3.fc_in.weight": "model-00002-of-00007.safetensors",
|
532 |
+
"transformer.h.4.block_sparse_moe.experts.3.fc_out.bias": "model-00002-of-00007.safetensors",
|
533 |
+
"transformer.h.4.block_sparse_moe.experts.3.fc_out.weight": "model-00002-of-00007.safetensors",
|
534 |
+
"transformer.h.4.block_sparse_moe.gate.weight": "model-00002-of-00007.safetensors",
|
535 |
+
"transformer.h.4.ln_1.bias": "model-00002-of-00007.safetensors",
|
536 |
+
"transformer.h.4.ln_1.weight": "model-00002-of-00007.safetensors",
|
537 |
+
"transformer.h.5.attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
538 |
+
"transformer.h.5.attn.out_proj.weight": "model-00002-of-00007.safetensors",
|
539 |
+
"transformer.h.5.attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
540 |
+
"transformer.h.5.attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
541 |
+
"transformer.h.5.block_sparse_moe.experts.0.fc_in.bias": "model-00002-of-00007.safetensors",
|
542 |
+
"transformer.h.5.block_sparse_moe.experts.0.fc_in.weight": "model-00002-of-00007.safetensors",
|
543 |
+
"transformer.h.5.block_sparse_moe.experts.0.fc_out.bias": "model-00002-of-00007.safetensors",
|
544 |
+
"transformer.h.5.block_sparse_moe.experts.0.fc_out.weight": "model-00002-of-00007.safetensors",
|
545 |
+
"transformer.h.5.block_sparse_moe.experts.1.fc_in.bias": "model-00002-of-00007.safetensors",
|
546 |
+
"transformer.h.5.block_sparse_moe.experts.1.fc_in.weight": "model-00002-of-00007.safetensors",
|
547 |
+
"transformer.h.5.block_sparse_moe.experts.1.fc_out.bias": "model-00002-of-00007.safetensors",
|
548 |
+
"transformer.h.5.block_sparse_moe.experts.1.fc_out.weight": "model-00002-of-00007.safetensors",
|
549 |
+
"transformer.h.5.block_sparse_moe.experts.2.fc_in.bias": "model-00002-of-00007.safetensors",
|
550 |
+
"transformer.h.5.block_sparse_moe.experts.2.fc_in.weight": "model-00002-of-00007.safetensors",
|
551 |
+
"transformer.h.5.block_sparse_moe.experts.2.fc_out.bias": "model-00002-of-00007.safetensors",
|
552 |
+
"transformer.h.5.block_sparse_moe.experts.2.fc_out.weight": "model-00002-of-00007.safetensors",
|
553 |
+
"transformer.h.5.block_sparse_moe.experts.3.fc_in.bias": "model-00002-of-00007.safetensors",
|
554 |
+
"transformer.h.5.block_sparse_moe.experts.3.fc_in.weight": "model-00002-of-00007.safetensors",
|
555 |
+
"transformer.h.5.block_sparse_moe.experts.3.fc_out.bias": "model-00002-of-00007.safetensors",
|
556 |
+
"transformer.h.5.block_sparse_moe.experts.3.fc_out.weight": "model-00002-of-00007.safetensors",
|
557 |
+
"transformer.h.5.block_sparse_moe.gate.weight": "model-00002-of-00007.safetensors",
|
558 |
+
"transformer.h.5.ln_1.bias": "model-00002-of-00007.safetensors",
|
559 |
+
"transformer.h.5.ln_1.weight": "model-00002-of-00007.safetensors",
|
560 |
+
"transformer.h.6.attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
561 |
+
"transformer.h.6.attn.out_proj.weight": "model-00002-of-00007.safetensors",
|
562 |
+
"transformer.h.6.attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
563 |
+
"transformer.h.6.attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
564 |
+
"transformer.h.6.block_sparse_moe.experts.0.fc_in.bias": "model-00002-of-00007.safetensors",
|
565 |
+
"transformer.h.6.block_sparse_moe.experts.0.fc_in.weight": "model-00002-of-00007.safetensors",
|
566 |
+
"transformer.h.6.block_sparse_moe.experts.0.fc_out.bias": "model-00002-of-00007.safetensors",
|
567 |
+
"transformer.h.6.block_sparse_moe.experts.0.fc_out.weight": "model-00002-of-00007.safetensors",
|
568 |
+
"transformer.h.6.block_sparse_moe.experts.1.fc_in.bias": "model-00002-of-00007.safetensors",
|
569 |
+
"transformer.h.6.block_sparse_moe.experts.1.fc_in.weight": "model-00002-of-00007.safetensors",
|
570 |
+
"transformer.h.6.block_sparse_moe.experts.1.fc_out.bias": "model-00002-of-00007.safetensors",
|
571 |
+
"transformer.h.6.block_sparse_moe.experts.1.fc_out.weight": "model-00002-of-00007.safetensors",
|
572 |
+
"transformer.h.6.block_sparse_moe.experts.2.fc_in.bias": "model-00002-of-00007.safetensors",
|
573 |
+
"transformer.h.6.block_sparse_moe.experts.2.fc_in.weight": "model-00002-of-00007.safetensors",
|
574 |
+
"transformer.h.6.block_sparse_moe.experts.2.fc_out.bias": "model-00002-of-00007.safetensors",
|
575 |
+
"transformer.h.6.block_sparse_moe.experts.2.fc_out.weight": "model-00002-of-00007.safetensors",
|
576 |
+
"transformer.h.6.block_sparse_moe.experts.3.fc_in.bias": "model-00002-of-00007.safetensors",
|
577 |
+
"transformer.h.6.block_sparse_moe.experts.3.fc_in.weight": "model-00002-of-00007.safetensors",
|
578 |
+
"transformer.h.6.block_sparse_moe.experts.3.fc_out.bias": "model-00002-of-00007.safetensors",
|
579 |
+
"transformer.h.6.block_sparse_moe.experts.3.fc_out.weight": "model-00002-of-00007.safetensors",
|
580 |
+
"transformer.h.6.block_sparse_moe.gate.weight": "model-00002-of-00007.safetensors",
|
581 |
+
"transformer.h.6.ln_1.bias": "model-00002-of-00007.safetensors",
|
582 |
+
"transformer.h.6.ln_1.weight": "model-00002-of-00007.safetensors",
|
583 |
+
"transformer.h.7.attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
584 |
+
"transformer.h.7.attn.out_proj.weight": "model-00002-of-00007.safetensors",
|
585 |
+
"transformer.h.7.attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
586 |
+
"transformer.h.7.attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
587 |
+
"transformer.h.7.block_sparse_moe.experts.0.fc_in.bias": "model-00002-of-00007.safetensors",
|
588 |
+
"transformer.h.7.block_sparse_moe.experts.0.fc_in.weight": "model-00002-of-00007.safetensors",
|
589 |
+
"transformer.h.7.block_sparse_moe.experts.0.fc_out.bias": "model-00002-of-00007.safetensors",
|
590 |
+
"transformer.h.7.block_sparse_moe.experts.0.fc_out.weight": "model-00002-of-00007.safetensors",
|
591 |
+
"transformer.h.7.block_sparse_moe.experts.1.fc_in.bias": "model-00002-of-00007.safetensors",
|
592 |
+
"transformer.h.7.block_sparse_moe.experts.1.fc_in.weight": "model-00002-of-00007.safetensors",
|
593 |
+
"transformer.h.7.block_sparse_moe.experts.1.fc_out.bias": "model-00002-of-00007.safetensors",
|
594 |
+
"transformer.h.7.block_sparse_moe.experts.1.fc_out.weight": "model-00002-of-00007.safetensors",
|
595 |
+
"transformer.h.7.block_sparse_moe.experts.2.fc_in.bias": "model-00002-of-00007.safetensors",
|
596 |
+
"transformer.h.7.block_sparse_moe.experts.2.fc_in.weight": "model-00002-of-00007.safetensors",
|
597 |
+
"transformer.h.7.block_sparse_moe.experts.2.fc_out.bias": "model-00002-of-00007.safetensors",
|
598 |
+
"transformer.h.7.block_sparse_moe.experts.2.fc_out.weight": "model-00002-of-00007.safetensors",
|
599 |
+
"transformer.h.7.block_sparse_moe.experts.3.fc_in.bias": "model-00002-of-00007.safetensors",
|
600 |
+
"transformer.h.7.block_sparse_moe.experts.3.fc_in.weight": "model-00002-of-00007.safetensors",
|
601 |
+
"transformer.h.7.block_sparse_moe.experts.3.fc_out.bias": "model-00003-of-00007.safetensors",
|
602 |
+
"transformer.h.7.block_sparse_moe.experts.3.fc_out.weight": "model-00003-of-00007.safetensors",
|
603 |
+
"transformer.h.7.block_sparse_moe.gate.weight": "model-00002-of-00007.safetensors",
|
604 |
+
"transformer.h.7.ln_1.bias": "model-00002-of-00007.safetensors",
|
605 |
+
"transformer.h.7.ln_1.weight": "model-00002-of-00007.safetensors",
|
606 |
+
"transformer.h.8.attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
607 |
+
"transformer.h.8.attn.out_proj.weight": "model-00003-of-00007.safetensors",
|
608 |
+
"transformer.h.8.attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
609 |
+
"transformer.h.8.attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
610 |
+
"transformer.h.8.block_sparse_moe.experts.0.fc_in.bias": "model-00003-of-00007.safetensors",
|
611 |
+
"transformer.h.8.block_sparse_moe.experts.0.fc_in.weight": "model-00003-of-00007.safetensors",
|
612 |
+
"transformer.h.8.block_sparse_moe.experts.0.fc_out.bias": "model-00003-of-00007.safetensors",
|
613 |
+
"transformer.h.8.block_sparse_moe.experts.0.fc_out.weight": "model-00003-of-00007.safetensors",
|
614 |
+
"transformer.h.8.block_sparse_moe.experts.1.fc_in.bias": "model-00003-of-00007.safetensors",
|
615 |
+
"transformer.h.8.block_sparse_moe.experts.1.fc_in.weight": "model-00003-of-00007.safetensors",
|
616 |
+
"transformer.h.8.block_sparse_moe.experts.1.fc_out.bias": "model-00003-of-00007.safetensors",
|
617 |
+
"transformer.h.8.block_sparse_moe.experts.1.fc_out.weight": "model-00003-of-00007.safetensors",
|
618 |
+
"transformer.h.8.block_sparse_moe.experts.2.fc_in.bias": "model-00003-of-00007.safetensors",
|
619 |
+
"transformer.h.8.block_sparse_moe.experts.2.fc_in.weight": "model-00003-of-00007.safetensors",
|
620 |
+
"transformer.h.8.block_sparse_moe.experts.2.fc_out.bias": "model-00003-of-00007.safetensors",
|
621 |
+
"transformer.h.8.block_sparse_moe.experts.2.fc_out.weight": "model-00003-of-00007.safetensors",
|
622 |
+
"transformer.h.8.block_sparse_moe.experts.3.fc_in.bias": "model-00003-of-00007.safetensors",
|
623 |
+
"transformer.h.8.block_sparse_moe.experts.3.fc_in.weight": "model-00003-of-00007.safetensors",
|
624 |
+
"transformer.h.8.block_sparse_moe.experts.3.fc_out.bias": "model-00003-of-00007.safetensors",
|
625 |
+
"transformer.h.8.block_sparse_moe.experts.3.fc_out.weight": "model-00003-of-00007.safetensors",
|
626 |
+
"transformer.h.8.block_sparse_moe.gate.weight": "model-00003-of-00007.safetensors",
|
627 |
+
"transformer.h.8.ln_1.bias": "model-00003-of-00007.safetensors",
|
628 |
+
"transformer.h.8.ln_1.weight": "model-00003-of-00007.safetensors",
|
629 |
+
"transformer.h.9.attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
630 |
+
"transformer.h.9.attn.out_proj.weight": "model-00003-of-00007.safetensors",
|
631 |
+
"transformer.h.9.attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
632 |
+
"transformer.h.9.attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
633 |
+
"transformer.h.9.block_sparse_moe.experts.0.fc_in.bias": "model-00003-of-00007.safetensors",
|
634 |
+
"transformer.h.9.block_sparse_moe.experts.0.fc_in.weight": "model-00003-of-00007.safetensors",
|
635 |
+
"transformer.h.9.block_sparse_moe.experts.0.fc_out.bias": "model-00003-of-00007.safetensors",
|
636 |
+
"transformer.h.9.block_sparse_moe.experts.0.fc_out.weight": "model-00003-of-00007.safetensors",
|
637 |
+
"transformer.h.9.block_sparse_moe.experts.1.fc_in.bias": "model-00003-of-00007.safetensors",
|
638 |
+
"transformer.h.9.block_sparse_moe.experts.1.fc_in.weight": "model-00003-of-00007.safetensors",
|
639 |
+
"transformer.h.9.block_sparse_moe.experts.1.fc_out.bias": "model-00003-of-00007.safetensors",
|
640 |
+
"transformer.h.9.block_sparse_moe.experts.1.fc_out.weight": "model-00003-of-00007.safetensors",
|
641 |
+
"transformer.h.9.block_sparse_moe.experts.2.fc_in.bias": "model-00003-of-00007.safetensors",
|
642 |
+
"transformer.h.9.block_sparse_moe.experts.2.fc_in.weight": "model-00003-of-00007.safetensors",
|
643 |
+
"transformer.h.9.block_sparse_moe.experts.2.fc_out.bias": "model-00003-of-00007.safetensors",
|
644 |
+
"transformer.h.9.block_sparse_moe.experts.2.fc_out.weight": "model-00003-of-00007.safetensors",
|
645 |
+
"transformer.h.9.block_sparse_moe.experts.3.fc_in.bias": "model-00003-of-00007.safetensors",
|
646 |
+
"transformer.h.9.block_sparse_moe.experts.3.fc_in.weight": "model-00003-of-00007.safetensors",
|
647 |
+
"transformer.h.9.block_sparse_moe.experts.3.fc_out.bias": "model-00003-of-00007.safetensors",
|
648 |
+
"transformer.h.9.block_sparse_moe.experts.3.fc_out.weight": "model-00003-of-00007.safetensors",
|
649 |
+
"transformer.h.9.block_sparse_moe.gate.weight": "model-00003-of-00007.safetensors",
|
650 |
+
"transformer.h.9.ln_1.bias": "model-00003-of-00007.safetensors",
|
651 |
+
"transformer.h.9.ln_1.weight": "model-00003-of-00007.safetensors",
|
652 |
+
"transformer.ln_f.bias": "model-00007-of-00007.safetensors",
|
653 |
+
"transformer.ln_f.weight": "model-00007-of-00007.safetensors",
|
654 |
+
"transformer.wte.weight": "model-00001-of-00007.safetensors"
|
655 |
+
}
|
656 |
+
}
|
modeling_gptj_moe.py
ADDED
@@ -0,0 +1,671 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" GPT-J model with MoE. """
|
2 |
+
|
3 |
+
import warnings
|
4 |
+
from typing import Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from torch import nn
|
10 |
+
|
11 |
+
from transformers.modeling_outputs import (
|
12 |
+
MoeCausalLMOutputWithPast,
|
13 |
+
MoeModelOutputWithPast
|
14 |
+
)
|
15 |
+
from transformers.models.gptj.modeling_gptj import (
|
16 |
+
GPTJ_ATTENTION_CLASSES,
|
17 |
+
GPTJMLP,
|
18 |
+
GPTJPreTrainedModel
|
19 |
+
)
|
20 |
+
from transformers.utils import logging
|
21 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
22 |
+
|
23 |
+
from .configuration_gptj_moe import GPTJMoEConfig
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func
|
28 |
+
def load_balancing_loss_func(
|
29 |
+
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
|
30 |
+
) -> float:
|
31 |
+
r"""
|
32 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
33 |
+
|
34 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
35 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
36 |
+
experts is too unbalanced.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
40 |
+
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
41 |
+
shape [batch_size X sequence_length, num_experts].
|
42 |
+
attention_mask (`torch.Tensor`, None):
|
43 |
+
The attention_mask used in forward function
|
44 |
+
shape [batch_size X sequence_length] if not None.
|
45 |
+
num_experts (`int`, *optional*):
|
46 |
+
Number of experts
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
The auxiliary loss.
|
50 |
+
"""
|
51 |
+
if gate_logits is None or not isinstance(gate_logits, tuple):
|
52 |
+
return 0
|
53 |
+
|
54 |
+
if isinstance(gate_logits, tuple):
|
55 |
+
compute_device = gate_logits[0].device
|
56 |
+
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
57 |
+
|
58 |
+
routing_weights = F.softmax(concatenated_gate_logits, dim=-1)
|
59 |
+
|
60 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
61 |
+
|
62 |
+
expert_mask = F.one_hot(selected_experts, num_experts)
|
63 |
+
|
64 |
+
if attention_mask is None:
|
65 |
+
# Compute the percentage of tokens routed to each experts
|
66 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
67 |
+
|
68 |
+
# Compute the average probability of routing to these experts
|
69 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
70 |
+
else:
|
71 |
+
batch_size, sequence_length = attention_mask.shape
|
72 |
+
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
73 |
+
|
74 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
75 |
+
expert_attention_mask = (
|
76 |
+
attention_mask[None, :, :, None, None]
|
77 |
+
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
|
78 |
+
.reshape(-1, top_k, num_experts)
|
79 |
+
.to(compute_device)
|
80 |
+
)
|
81 |
+
|
82 |
+
# Compute the percentage of tokens routed to each experts
|
83 |
+
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
84 |
+
expert_attention_mask, dim=0
|
85 |
+
)
|
86 |
+
|
87 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
88 |
+
router_per_expert_attention_mask = (
|
89 |
+
attention_mask[None, :, :, None]
|
90 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
91 |
+
.reshape(-1, num_experts)
|
92 |
+
.to(compute_device)
|
93 |
+
)
|
94 |
+
|
95 |
+
# Compute the average probability of routing to these experts
|
96 |
+
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
97 |
+
router_per_expert_attention_mask, dim=0
|
98 |
+
)
|
99 |
+
|
100 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
101 |
+
return overall_loss * num_experts
|
102 |
+
|
103 |
+
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralSparseMoeBlock
|
104 |
+
class GPTJSparseMoE(nn.Module):
|
105 |
+
"""
|
106 |
+
This implementation is
|
107 |
+
strictly equivalent to standard MoE with full capacity (no
|
108 |
+
dropped tokens). It's faster since it formulates MoE operations
|
109 |
+
in terms of block-sparse operations to accomodate imbalanced
|
110 |
+
assignments of tokens to experts, whereas standard MoE either
|
111 |
+
(1) drop tokens at the cost of reduced performance or (2) set
|
112 |
+
capacity factor to number of experts and thus waste computation
|
113 |
+
and memory on padding.
|
114 |
+
"""
|
115 |
+
|
116 |
+
def __init__(self, config):
|
117 |
+
super().__init__()
|
118 |
+
self.hidden_dim = config.n_embd
|
119 |
+
self.ffn_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
120 |
+
self.num_experts = config.num_local_experts
|
121 |
+
self.top_k = config.num_experts_per_tok
|
122 |
+
|
123 |
+
# gating
|
124 |
+
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
125 |
+
|
126 |
+
self.experts = nn.ModuleList([GPTJMLP(self.ffn_dim, config) for _ in range(self.num_experts)])
|
127 |
+
|
128 |
+
# Jitter parameters
|
129 |
+
self.jitter_noise = config.router_jitter_noise
|
130 |
+
|
131 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
132 |
+
""" """
|
133 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
134 |
+
if self.training and self.jitter_noise > 0:
|
135 |
+
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
|
136 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
137 |
+
# router_logits: (batch * sequence_length, n_experts)
|
138 |
+
router_logits = self.gate(hidden_states)
|
139 |
+
|
140 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
141 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
142 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
143 |
+
# we cast back to the input dtype
|
144 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
145 |
+
|
146 |
+
final_hidden_states = torch.zeros(
|
147 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
148 |
+
)
|
149 |
+
|
150 |
+
# One hot encode the selected experts to create an expert mask
|
151 |
+
# this will be used to easily index which expert is going to be sollicitated
|
152 |
+
expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
153 |
+
|
154 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
155 |
+
for expert_idx in range(self.num_experts):
|
156 |
+
expert_layer = self.experts[expert_idx]
|
157 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
158 |
+
|
159 |
+
if top_x.shape[0] == 0:
|
160 |
+
continue
|
161 |
+
|
162 |
+
# Index the correct hidden states and compute the expert hidden state for
|
163 |
+
# the current expert. We need to make sure to multiply the output hidden
|
164 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
165 |
+
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
166 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
|
167 |
+
|
168 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
169 |
+
# the `top_x` tensor here.
|
170 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
171 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
172 |
+
return final_hidden_states, router_logits
|
173 |
+
|
174 |
+
class GPTJMoEBlock(nn.Module):
|
175 |
+
def __init__(self, config):
|
176 |
+
super().__init__()
|
177 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
178 |
+
self.attn = GPTJ_ATTENTION_CLASSES[config._attn_implementation](config)
|
179 |
+
self.block_sparse_moe = GPTJSparseMoE(config)
|
180 |
+
|
181 |
+
def forward(
|
182 |
+
self,
|
183 |
+
hidden_states: Optional[torch.FloatTensor],
|
184 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
185 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
186 |
+
position_ids: Optional[torch.LongTensor] = None,
|
187 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
188 |
+
use_cache: Optional[bool] = False,
|
189 |
+
output_attentions: Optional[bool] = False,
|
190 |
+
output_router_logits: Optional[bool] = False,
|
191 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
192 |
+
residual = hidden_states
|
193 |
+
hidden_states = self.ln_1(hidden_states)
|
194 |
+
attn_outputs = self.attn(
|
195 |
+
hidden_states=hidden_states,
|
196 |
+
layer_past=layer_past,
|
197 |
+
attention_mask=attention_mask,
|
198 |
+
position_ids=position_ids,
|
199 |
+
head_mask=head_mask,
|
200 |
+
use_cache=use_cache,
|
201 |
+
output_attentions=output_attentions,
|
202 |
+
)
|
203 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
204 |
+
outputs = attn_outputs[1:]
|
205 |
+
|
206 |
+
feed_forward_hidden_states, router_logits = self.block_sparse_moe(hidden_states)
|
207 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
208 |
+
|
209 |
+
if use_cache:
|
210 |
+
outputs = (hidden_states,) + outputs
|
211 |
+
else:
|
212 |
+
outputs = (hidden_states,) + outputs[1:]
|
213 |
+
|
214 |
+
if output_router_logits:
|
215 |
+
outputs = outputs + (router_logits,)
|
216 |
+
|
217 |
+
return outputs # hidden_states, present, (attentions), (router_logits)
|
218 |
+
|
219 |
+
class GPTJMoEModel(GPTJPreTrainedModel):
|
220 |
+
def __init__(self, config):
|
221 |
+
super().__init__(config)
|
222 |
+
|
223 |
+
self.embed_dim = config.n_embd
|
224 |
+
self.vocab_size = config.vocab_size
|
225 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
226 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
227 |
+
self.h = nn.ModuleList([GPTJMoEBlock(config) for _ in range(config.n_layer)])
|
228 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
229 |
+
|
230 |
+
# Model parallel
|
231 |
+
self.model_parallel = False
|
232 |
+
self.device_map = None
|
233 |
+
self.gradient_checkpointing = False
|
234 |
+
|
235 |
+
# Initialize weights and apply final processing
|
236 |
+
self.post_init()
|
237 |
+
|
238 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
239 |
+
|
240 |
+
def parallelize(self, device_map=None):
|
241 |
+
warnings.warn(
|
242 |
+
"`GPTJModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
|
243 |
+
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
244 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
|
245 |
+
" ...}",
|
246 |
+
FutureWarning,
|
247 |
+
)
|
248 |
+
# Check validity of device_map
|
249 |
+
self.device_map = (
|
250 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
251 |
+
)
|
252 |
+
assert_device_map(self.device_map, len(self.h))
|
253 |
+
self.model_parallel = True
|
254 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
255 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
256 |
+
self.wte = self.wte.to(self.first_device)
|
257 |
+
# Load onto devices
|
258 |
+
for k, v in self.device_map.items():
|
259 |
+
for block in v:
|
260 |
+
cuda_device = "cuda:" + str(k)
|
261 |
+
self.h[block] = self.h[block].to(cuda_device)
|
262 |
+
# ln_f to last
|
263 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
264 |
+
|
265 |
+
def deparallelize(self):
|
266 |
+
warnings.warn(
|
267 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
268 |
+
FutureWarning,
|
269 |
+
)
|
270 |
+
self.model_parallel = False
|
271 |
+
self.device_map = None
|
272 |
+
self.first_device = "cpu"
|
273 |
+
self.last_device = "cpu"
|
274 |
+
self.wte = self.wte.to("cpu")
|
275 |
+
for index in range(len(self.h)):
|
276 |
+
self.h[index] = self.h[index].to("cpu")
|
277 |
+
self.ln_f = self.ln_f.to("cpu")
|
278 |
+
torch.cuda.empty_cache()
|
279 |
+
|
280 |
+
def get_input_embeddings(self):
|
281 |
+
return self.wte
|
282 |
+
|
283 |
+
def set_input_embeddings(self, new_embeddings):
|
284 |
+
self.wte = new_embeddings
|
285 |
+
|
286 |
+
def forward(
|
287 |
+
self,
|
288 |
+
input_ids: Optional[torch.LongTensor] = None,
|
289 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
290 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
291 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
292 |
+
position_ids: Optional[torch.LongTensor] = None,
|
293 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
294 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
295 |
+
use_cache: Optional[bool] = None,
|
296 |
+
output_attentions: Optional[bool] = None,
|
297 |
+
output_hidden_states: Optional[bool] = None,
|
298 |
+
output_router_logits: Optional[bool] = None,
|
299 |
+
return_dict: Optional[bool] = None,
|
300 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
301 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
302 |
+
output_router_logits = (
|
303 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
304 |
+
)
|
305 |
+
output_hidden_states = (
|
306 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
307 |
+
)
|
308 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
309 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
310 |
+
|
311 |
+
if input_ids is not None and inputs_embeds is not None:
|
312 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
313 |
+
elif input_ids is not None:
|
314 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
315 |
+
input_shape = input_ids.size()
|
316 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
317 |
+
batch_size = input_ids.shape[0]
|
318 |
+
elif inputs_embeds is not None:
|
319 |
+
input_shape = inputs_embeds.size()[:-1]
|
320 |
+
batch_size = inputs_embeds.shape[0]
|
321 |
+
else:
|
322 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
323 |
+
|
324 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
325 |
+
|
326 |
+
if token_type_ids is not None:
|
327 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
328 |
+
|
329 |
+
if past_key_values is None:
|
330 |
+
past_length = 0
|
331 |
+
past_key_values = tuple([None] * len(self.h))
|
332 |
+
else:
|
333 |
+
past_length = past_key_values[0][0].size(-2)
|
334 |
+
|
335 |
+
if position_ids is None:
|
336 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
337 |
+
position_ids = position_ids.unsqueeze(0)
|
338 |
+
|
339 |
+
if not self._use_flash_attention_2:
|
340 |
+
# Attention mask.
|
341 |
+
if attention_mask is not None:
|
342 |
+
if batch_size <= 0:
|
343 |
+
raise ValueError("batch_size has to be defined and > 0")
|
344 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
345 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
346 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
347 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
348 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
349 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
350 |
+
attention_mask = attention_mask[:, None, None, :]
|
351 |
+
|
352 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
353 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
354 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
355 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
356 |
+
# effectively the same as removing these entirely.
|
357 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
358 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
359 |
+
|
360 |
+
# Prepare head mask if needed
|
361 |
+
# 1.0 in head_mask indicate we keep the head
|
362 |
+
# attention_probs has shape bsz x num_attention_heads x N x N
|
363 |
+
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
364 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
365 |
+
|
366 |
+
if inputs_embeds is None:
|
367 |
+
inputs_embeds = self.wte(input_ids)
|
368 |
+
|
369 |
+
hidden_states = inputs_embeds
|
370 |
+
|
371 |
+
if token_type_ids is not None:
|
372 |
+
token_type_embeds = self.wte(token_type_ids)
|
373 |
+
hidden_states = hidden_states + token_type_embeds
|
374 |
+
|
375 |
+
hidden_states = self.drop(hidden_states)
|
376 |
+
|
377 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
378 |
+
|
379 |
+
if self.gradient_checkpointing and self.training:
|
380 |
+
if use_cache:
|
381 |
+
logger.warning_once(
|
382 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
383 |
+
)
|
384 |
+
use_cache = False
|
385 |
+
|
386 |
+
presents = () if use_cache else None
|
387 |
+
all_self_attentions = () if output_attentions else None
|
388 |
+
all_hidden_states = () if output_hidden_states else None
|
389 |
+
all_router_logits = () if output_router_logits else None
|
390 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
391 |
+
# Model parallel
|
392 |
+
if self.model_parallel:
|
393 |
+
torch.cuda.set_device(hidden_states.device)
|
394 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
395 |
+
if layer_past is not None:
|
396 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
397 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
398 |
+
if attention_mask is not None:
|
399 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
400 |
+
if isinstance(head_mask, torch.Tensor):
|
401 |
+
head_mask = head_mask.to(hidden_states.device)
|
402 |
+
if output_hidden_states:
|
403 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
404 |
+
|
405 |
+
if self.gradient_checkpointing and self.training:
|
406 |
+
outputs = self._gradient_checkpointing_func(
|
407 |
+
block.__call__,
|
408 |
+
hidden_states,
|
409 |
+
None,
|
410 |
+
attention_mask,
|
411 |
+
position_ids,
|
412 |
+
head_mask[i],
|
413 |
+
use_cache,
|
414 |
+
output_attentions,
|
415 |
+
output_router_logits,
|
416 |
+
)
|
417 |
+
else:
|
418 |
+
outputs = block(
|
419 |
+
hidden_states=hidden_states,
|
420 |
+
layer_past=layer_past,
|
421 |
+
attention_mask=attention_mask,
|
422 |
+
position_ids=position_ids,
|
423 |
+
head_mask=head_mask[i],
|
424 |
+
use_cache=use_cache,
|
425 |
+
output_attentions=output_attentions,
|
426 |
+
output_router_logits=output_router_logits,
|
427 |
+
)
|
428 |
+
|
429 |
+
hidden_states = outputs[0]
|
430 |
+
if use_cache is True:
|
431 |
+
presents = presents + (outputs[1],)
|
432 |
+
|
433 |
+
if output_attentions:
|
434 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
435 |
+
|
436 |
+
if output_router_logits:
|
437 |
+
all_router_logits = all_router_logits + (outputs[-1],)
|
438 |
+
|
439 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
440 |
+
if self.model_parallel:
|
441 |
+
for k, v in self.device_map.items():
|
442 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
443 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
444 |
+
|
445 |
+
hidden_states = self.ln_f(hidden_states)
|
446 |
+
|
447 |
+
hidden_states = hidden_states.view(output_shape)
|
448 |
+
# Add last hidden state
|
449 |
+
if output_hidden_states:
|
450 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
451 |
+
|
452 |
+
# Add router logits
|
453 |
+
if output_router_logits:
|
454 |
+
all_router_logits += (outputs[-1],)
|
455 |
+
|
456 |
+
if not return_dict:
|
457 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
458 |
+
|
459 |
+
return MoeModelOutputWithPast(
|
460 |
+
last_hidden_state=hidden_states,
|
461 |
+
past_key_values=presents,
|
462 |
+
hidden_states=all_hidden_states,
|
463 |
+
attentions=all_self_attentions,
|
464 |
+
router_logits=all_router_logits,
|
465 |
+
)
|
466 |
+
|
467 |
+
class GPTJMoEForCausalLM(GPTJPreTrainedModel):
|
468 |
+
_tied_weights_keys = ["lm_head.weight"]
|
469 |
+
|
470 |
+
def __init__(self, config):
|
471 |
+
super().__init__(config)
|
472 |
+
self.transformer = GPTJMoEModel(config)
|
473 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
474 |
+
|
475 |
+
# Model parallel
|
476 |
+
self.model_parallel = False
|
477 |
+
self.device_map = None
|
478 |
+
|
479 |
+
# MoE
|
480 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
481 |
+
self.num_experts = config.num_local_experts
|
482 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
483 |
+
|
484 |
+
# Initialize weights and apply final processing
|
485 |
+
self.post_init()
|
486 |
+
|
487 |
+
def parallelize(self, device_map=None):
|
488 |
+
warnings.warn(
|
489 |
+
"`GPTJForCausalLM.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
|
490 |
+
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
491 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
|
492 |
+
" 0, 'transformer.h.1': 1, ...}",
|
493 |
+
FutureWarning,
|
494 |
+
)
|
495 |
+
self.device_map = (
|
496 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
497 |
+
if device_map is None
|
498 |
+
else device_map
|
499 |
+
)
|
500 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
501 |
+
self.transformer.parallelize(self.device_map)
|
502 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
503 |
+
self.model_parallel = True
|
504 |
+
|
505 |
+
def deparallelize(self):
|
506 |
+
warnings.warn(
|
507 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
508 |
+
FutureWarning,
|
509 |
+
)
|
510 |
+
self.transformer.deparallelize()
|
511 |
+
self.transformer = self.transformer.to("cpu")
|
512 |
+
self.lm_head = self.lm_head.to("cpu")
|
513 |
+
self.model_parallel = False
|
514 |
+
torch.cuda.empty_cache()
|
515 |
+
|
516 |
+
def get_output_embeddings(self):
|
517 |
+
return self.lm_head
|
518 |
+
|
519 |
+
def set_output_embeddings(self, new_embeddings):
|
520 |
+
self.lm_head = new_embeddings
|
521 |
+
|
522 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, output_router_logits=False, **kwargs):
|
523 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
524 |
+
# Omit tokens covered by past_key_values
|
525 |
+
if past_key_values:
|
526 |
+
past_length = past_key_values[0][0].shape[2]
|
527 |
+
|
528 |
+
# Some generation methods already pass only the last input ID
|
529 |
+
if input_ids.shape[1] > past_length:
|
530 |
+
remove_prefix_length = past_length
|
531 |
+
else:
|
532 |
+
# Default to old behavior: keep only final ID
|
533 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
534 |
+
|
535 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
536 |
+
if token_type_ids is not None:
|
537 |
+
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
|
538 |
+
|
539 |
+
attention_mask = kwargs.get("attention_mask", None)
|
540 |
+
position_ids = kwargs.get("position_ids", None)
|
541 |
+
|
542 |
+
if attention_mask is not None and position_ids is None:
|
543 |
+
# create position_ids on the fly for batch generation
|
544 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
545 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
546 |
+
if past_key_values:
|
547 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
548 |
+
|
549 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
550 |
+
if inputs_embeds is not None and past_key_values is None:
|
551 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
552 |
+
else:
|
553 |
+
model_inputs = {"input_ids": input_ids}
|
554 |
+
|
555 |
+
model_inputs.update(
|
556 |
+
{
|
557 |
+
"past_key_values": past_key_values,
|
558 |
+
"use_cache": kwargs.get("use_cache"),
|
559 |
+
"position_ids": position_ids,
|
560 |
+
"attention_mask": attention_mask,
|
561 |
+
"token_type_ids": token_type_ids,
|
562 |
+
"output_router_logits": output_router_logits,
|
563 |
+
}
|
564 |
+
)
|
565 |
+
|
566 |
+
return model_inputs
|
567 |
+
|
568 |
+
def forward(
|
569 |
+
self,
|
570 |
+
input_ids: Optional[torch.LongTensor] = None,
|
571 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
572 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
573 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
574 |
+
position_ids: Optional[torch.LongTensor] = None,
|
575 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
576 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
577 |
+
labels: Optional[torch.LongTensor] = None,
|
578 |
+
use_cache: Optional[bool] = None,
|
579 |
+
output_attentions: Optional[bool] = None,
|
580 |
+
output_hidden_states: Optional[bool] = None,
|
581 |
+
output_router_logits: Optional[bool] = None,
|
582 |
+
return_dict: Optional[bool] = None,
|
583 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
584 |
+
r"""
|
585 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
586 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
587 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
588 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
589 |
+
"""
|
590 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
591 |
+
|
592 |
+
transformer_outputs = self.transformer(
|
593 |
+
input_ids,
|
594 |
+
past_key_values=past_key_values,
|
595 |
+
attention_mask=attention_mask,
|
596 |
+
token_type_ids=token_type_ids,
|
597 |
+
position_ids=position_ids,
|
598 |
+
head_mask=head_mask,
|
599 |
+
inputs_embeds=inputs_embeds,
|
600 |
+
use_cache=use_cache,
|
601 |
+
output_attentions=output_attentions,
|
602 |
+
output_hidden_states=output_hidden_states,
|
603 |
+
output_router_logits=output_router_logits,
|
604 |
+
return_dict=return_dict,
|
605 |
+
)
|
606 |
+
hidden_states = transformer_outputs[0]
|
607 |
+
|
608 |
+
# Set device for model parallelism
|
609 |
+
if self.model_parallel:
|
610 |
+
torch.cuda.set_device(self.transformer.first_device)
|
611 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
612 |
+
|
613 |
+
# make sure sampling in fp16 works correctly and
|
614 |
+
# compute loss in fp32 to match with mesh-tf version
|
615 |
+
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
616 |
+
lm_logits = self.lm_head(hidden_states).to(torch.float32)
|
617 |
+
|
618 |
+
loss = None
|
619 |
+
if labels is not None:
|
620 |
+
# move labels to correct device to enable model parallelism
|
621 |
+
labels = labels.to(lm_logits.device)
|
622 |
+
# Shift so that tokens < n predict n
|
623 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
624 |
+
shift_labels = labels[..., 1:].contiguous()
|
625 |
+
# Flatten the tokens
|
626 |
+
loss_fct = nn.CrossEntropyLoss()
|
627 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
628 |
+
|
629 |
+
loss = loss.to(hidden_states.dtype)
|
630 |
+
|
631 |
+
# MoE loss
|
632 |
+
aux_loss = None
|
633 |
+
if output_router_logits:
|
634 |
+
aux_loss = load_balancing_loss_func(
|
635 |
+
transformer_outputs.router_logits if return_dict else transformer_outputs[-1],
|
636 |
+
self.num_experts,
|
637 |
+
self.num_experts_per_tok,
|
638 |
+
attention_mask,
|
639 |
+
)
|
640 |
+
if labels is not None:
|
641 |
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
642 |
+
|
643 |
+
if not return_dict:
|
644 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
645 |
+
if output_router_logits:
|
646 |
+
output = (aux_loss,) + output
|
647 |
+
return ((loss,) + output) if loss is not None else output
|
648 |
+
|
649 |
+
return MoeCausalLMOutputWithPast(
|
650 |
+
loss=loss,
|
651 |
+
aux_loss=aux_loss,
|
652 |
+
logits=lm_logits,
|
653 |
+
past_key_values=transformer_outputs.past_key_values,
|
654 |
+
hidden_states=transformer_outputs.hidden_states,
|
655 |
+
attentions=transformer_outputs.attentions,
|
656 |
+
router_logits=transformer_outputs.router_logits
|
657 |
+
)
|
658 |
+
|
659 |
+
@staticmethod
|
660 |
+
def _reorder_cache(
|
661 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
662 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
663 |
+
"""
|
664 |
+
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
|
665 |
+
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
666 |
+
beam_idx at every generation step.
|
667 |
+
"""
|
668 |
+
return tuple(
|
669 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
670 |
+
for layer_past in past_key_values
|
671 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,1166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"50256": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"50257": {
|
14 |
+
"content": "<|extratoken_1|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": false
|
20 |
+
},
|
21 |
+
"50258": {
|
22 |
+
"content": "<|extratoken_2|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": true,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": false
|
28 |
+
},
|
29 |
+
"50259": {
|
30 |
+
"content": "<|extratoken_3|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": true,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": false
|
36 |
+
},
|
37 |
+
"50260": {
|
38 |
+
"content": "<|extratoken_4|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": false
|
44 |
+
},
|
45 |
+
"50261": {
|
46 |
+
"content": "<|extratoken_5|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": true,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": false
|
52 |
+
},
|
53 |
+
"50262": {
|
54 |
+
"content": "<|extratoken_6|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": true,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": false
|
60 |
+
},
|
61 |
+
"50263": {
|
62 |
+
"content": "<|extratoken_7|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": true,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": false
|
68 |
+
},
|
69 |
+
"50264": {
|
70 |
+
"content": "<|extratoken_8|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": true,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": false
|
76 |
+
},
|
77 |
+
"50265": {
|
78 |
+
"content": "<|extratoken_9|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": true,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": false
|
84 |
+
},
|
85 |
+
"50266": {
|
86 |
+
"content": "<|extratoken_10|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": true,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": false
|
92 |
+
},
|
93 |
+
"50267": {
|
94 |
+
"content": "<|extratoken_11|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": true,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": false
|
100 |
+
},
|
101 |
+
"50268": {
|
102 |
+
"content": "<|extratoken_12|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": true,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": false
|
108 |
+
},
|
109 |
+
"50269": {
|
110 |
+
"content": "<|extratoken_13|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": true,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": false
|
116 |
+
},
|
117 |
+
"50270": {
|
118 |
+
"content": "<|extratoken_14|>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": true,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"50271": {
|
126 |
+
"content": "<|extratoken_15|>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": true,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"50272": {
|
134 |
+
"content": "<|extratoken_16|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": true,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"50273": {
|
142 |
+
"content": "<|extratoken_17|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": true,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"50274": {
|
150 |
+
"content": "<|extratoken_18|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": true,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"50275": {
|
158 |
+
"content": "<|extratoken_19|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": true,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"50276": {
|
166 |
+
"content": "<|extratoken_20|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": true,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"50277": {
|
174 |
+
"content": "<|extratoken_21|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": true,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"50278": {
|
182 |
+
"content": "<|extratoken_22|>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": true,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"50279": {
|
190 |
+
"content": "<|extratoken_23|>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": true,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"50280": {
|
198 |
+
"content": "<|extratoken_24|>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": true,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"50281": {
|
206 |
+
"content": "<|extratoken_25|>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": true,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
},
|
213 |
+
"50282": {
|
214 |
+
"content": "<|extratoken_26|>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": true,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false,
|
219 |
+
"special": false
|
220 |
+
},
|
221 |
+
"50283": {
|
222 |
+
"content": "<|extratoken_27|>",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": true,
|
225 |
+
"rstrip": false,
|
226 |
+
"single_word": false,
|
227 |
+
"special": false
|
228 |
+
},
|
229 |
+
"50284": {
|
230 |
+
"content": "<|extratoken_28|>",
|
231 |
+
"lstrip": false,
|
232 |
+
"normalized": true,
|
233 |
+
"rstrip": false,
|
234 |
+
"single_word": false,
|
235 |
+
"special": false
|
236 |
+
},
|
237 |
+
"50285": {
|
238 |
+
"content": "<|extratoken_29|>",
|
239 |
+
"lstrip": false,
|
240 |
+
"normalized": true,
|
241 |
+
"rstrip": false,
|
242 |
+
"single_word": false,
|
243 |
+
"special": false
|
244 |
+
},
|
245 |
+
"50286": {
|
246 |
+
"content": "<|extratoken_30|>",
|
247 |
+
"lstrip": false,
|
248 |
+
"normalized": true,
|
249 |
+
"rstrip": false,
|
250 |
+
"single_word": false,
|
251 |
+
"special": false
|
252 |
+
},
|
253 |
+
"50287": {
|
254 |
+
"content": "<|extratoken_31|>",
|
255 |
+
"lstrip": false,
|
256 |
+
"normalized": true,
|
257 |
+
"rstrip": false,
|
258 |
+
"single_word": false,
|
259 |
+
"special": false
|
260 |
+
},
|
261 |
+
"50288": {
|
262 |
+
"content": "<|extratoken_32|>",
|
263 |
+
"lstrip": false,
|
264 |
+
"normalized": true,
|
265 |
+
"rstrip": false,
|
266 |
+
"single_word": false,
|
267 |
+
"special": false
|
268 |
+
},
|
269 |
+
"50289": {
|
270 |
+
"content": "<|extratoken_33|>",
|
271 |
+
"lstrip": false,
|
272 |
+
"normalized": true,
|
273 |
+
"rstrip": false,
|
274 |
+
"single_word": false,
|
275 |
+
"special": false
|
276 |
+
},
|
277 |
+
"50290": {
|
278 |
+
"content": "<|extratoken_34|>",
|
279 |
+
"lstrip": false,
|
280 |
+
"normalized": true,
|
281 |
+
"rstrip": false,
|
282 |
+
"single_word": false,
|
283 |
+
"special": false
|
284 |
+
},
|
285 |
+
"50291": {
|
286 |
+
"content": "<|extratoken_35|>",
|
287 |
+
"lstrip": false,
|
288 |
+
"normalized": true,
|
289 |
+
"rstrip": false,
|
290 |
+
"single_word": false,
|
291 |
+
"special": false
|
292 |
+
},
|
293 |
+
"50292": {
|
294 |
+
"content": "<|extratoken_36|>",
|
295 |
+
"lstrip": false,
|
296 |
+
"normalized": true,
|
297 |
+
"rstrip": false,
|
298 |
+
"single_word": false,
|
299 |
+
"special": false
|
300 |
+
},
|
301 |
+
"50293": {
|
302 |
+
"content": "<|extratoken_37|>",
|
303 |
+
"lstrip": false,
|
304 |
+
"normalized": true,
|
305 |
+
"rstrip": false,
|
306 |
+
"single_word": false,
|
307 |
+
"special": false
|
308 |
+
},
|
309 |
+
"50294": {
|
310 |
+
"content": "<|extratoken_38|>",
|
311 |
+
"lstrip": false,
|
312 |
+
"normalized": true,
|
313 |
+
"rstrip": false,
|
314 |
+
"single_word": false,
|
315 |
+
"special": false
|
316 |
+
},
|
317 |
+
"50295": {
|
318 |
+
"content": "<|extratoken_39|>",
|
319 |
+
"lstrip": false,
|
320 |
+
"normalized": true,
|
321 |
+
"rstrip": false,
|
322 |
+
"single_word": false,
|
323 |
+
"special": false
|
324 |
+
},
|
325 |
+
"50296": {
|
326 |
+
"content": "<|extratoken_40|>",
|
327 |
+
"lstrip": false,
|
328 |
+
"normalized": true,
|
329 |
+
"rstrip": false,
|
330 |
+
"single_word": false,
|
331 |
+
"special": false
|
332 |
+
},
|
333 |
+
"50297": {
|
334 |
+
"content": "<|extratoken_41|>",
|
335 |
+
"lstrip": false,
|
336 |
+
"normalized": true,
|
337 |
+
"rstrip": false,
|
338 |
+
"single_word": false,
|
339 |
+
"special": false
|
340 |
+
},
|
341 |
+
"50298": {
|
342 |
+
"content": "<|extratoken_42|>",
|
343 |
+
"lstrip": false,
|
344 |
+
"normalized": true,
|
345 |
+
"rstrip": false,
|
346 |
+
"single_word": false,
|
347 |
+
"special": false
|
348 |
+
},
|
349 |
+
"50299": {
|
350 |
+
"content": "<|extratoken_43|>",
|
351 |
+
"lstrip": false,
|
352 |
+
"normalized": true,
|
353 |
+
"rstrip": false,
|
354 |
+
"single_word": false,
|
355 |
+
"special": false
|
356 |
+
},
|
357 |
+
"50300": {
|
358 |
+
"content": "<|extratoken_44|>",
|
359 |
+
"lstrip": false,
|
360 |
+
"normalized": true,
|
361 |
+
"rstrip": false,
|
362 |
+
"single_word": false,
|
363 |
+
"special": false
|
364 |
+
},
|
365 |
+
"50301": {
|
366 |
+
"content": "<|extratoken_45|>",
|
367 |
+
"lstrip": false,
|
368 |
+
"normalized": true,
|
369 |
+
"rstrip": false,
|
370 |
+
"single_word": false,
|
371 |
+
"special": false
|
372 |
+
},
|
373 |
+
"50302": {
|
374 |
+
"content": "<|extratoken_46|>",
|
375 |
+
"lstrip": false,
|
376 |
+
"normalized": true,
|
377 |
+
"rstrip": false,
|
378 |
+
"single_word": false,
|
379 |
+
"special": false
|
380 |
+
},
|
381 |
+
"50303": {
|
382 |
+
"content": "<|extratoken_47|>",
|
383 |
+
"lstrip": false,
|
384 |
+
"normalized": true,
|
385 |
+
"rstrip": false,
|
386 |
+
"single_word": false,
|
387 |
+
"special": false
|
388 |
+
},
|
389 |
+
"50304": {
|
390 |
+
"content": "<|extratoken_48|>",
|
391 |
+
"lstrip": false,
|
392 |
+
"normalized": true,
|
393 |
+
"rstrip": false,
|
394 |
+
"single_word": false,
|
395 |
+
"special": false
|
396 |
+
},
|
397 |
+
"50305": {
|
398 |
+
"content": "<|extratoken_49|>",
|
399 |
+
"lstrip": false,
|
400 |
+
"normalized": true,
|
401 |
+
"rstrip": false,
|
402 |
+
"single_word": false,
|
403 |
+
"special": false
|
404 |
+
},
|
405 |
+
"50306": {
|
406 |
+
"content": "<|extratoken_50|>",
|
407 |
+
"lstrip": false,
|
408 |
+
"normalized": true,
|
409 |
+
"rstrip": false,
|
410 |
+
"single_word": false,
|
411 |
+
"special": false
|
412 |
+
},
|
413 |
+
"50307": {
|
414 |
+
"content": "<|extratoken_51|>",
|
415 |
+
"lstrip": false,
|
416 |
+
"normalized": true,
|
417 |
+
"rstrip": false,
|
418 |
+
"single_word": false,
|
419 |
+
"special": false
|
420 |
+
},
|
421 |
+
"50308": {
|
422 |
+
"content": "<|extratoken_52|>",
|
423 |
+
"lstrip": false,
|
424 |
+
"normalized": true,
|
425 |
+
"rstrip": false,
|
426 |
+
"single_word": false,
|
427 |
+
"special": false
|
428 |
+
},
|
429 |
+
"50309": {
|
430 |
+
"content": "<|extratoken_53|>",
|
431 |
+
"lstrip": false,
|
432 |
+
"normalized": true,
|
433 |
+
"rstrip": false,
|
434 |
+
"single_word": false,
|
435 |
+
"special": false
|
436 |
+
},
|
437 |
+
"50310": {
|
438 |
+
"content": "<|extratoken_54|>",
|
439 |
+
"lstrip": false,
|
440 |
+
"normalized": true,
|
441 |
+
"rstrip": false,
|
442 |
+
"single_word": false,
|
443 |
+
"special": false
|
444 |
+
},
|
445 |
+
"50311": {
|
446 |
+
"content": "<|extratoken_55|>",
|
447 |
+
"lstrip": false,
|
448 |
+
"normalized": true,
|
449 |
+
"rstrip": false,
|
450 |
+
"single_word": false,
|
451 |
+
"special": false
|
452 |
+
},
|
453 |
+
"50312": {
|
454 |
+
"content": "<|extratoken_56|>",
|
455 |
+
"lstrip": false,
|
456 |
+
"normalized": true,
|
457 |
+
"rstrip": false,
|
458 |
+
"single_word": false,
|
459 |
+
"special": false
|
460 |
+
},
|
461 |
+
"50313": {
|
462 |
+
"content": "<|extratoken_57|>",
|
463 |
+
"lstrip": false,
|
464 |
+
"normalized": true,
|
465 |
+
"rstrip": false,
|
466 |
+
"single_word": false,
|
467 |
+
"special": false
|
468 |
+
},
|
469 |
+
"50314": {
|
470 |
+
"content": "<|extratoken_58|>",
|
471 |
+
"lstrip": false,
|
472 |
+
"normalized": true,
|
473 |
+
"rstrip": false,
|
474 |
+
"single_word": false,
|
475 |
+
"special": false
|
476 |
+
},
|
477 |
+
"50315": {
|
478 |
+
"content": "<|extratoken_59|>",
|
479 |
+
"lstrip": false,
|
480 |
+
"normalized": true,
|
481 |
+
"rstrip": false,
|
482 |
+
"single_word": false,
|
483 |
+
"special": false
|
484 |
+
},
|
485 |
+
"50316": {
|
486 |
+
"content": "<|extratoken_60|>",
|
487 |
+
"lstrip": false,
|
488 |
+
"normalized": true,
|
489 |
+
"rstrip": false,
|
490 |
+
"single_word": false,
|
491 |
+
"special": false
|
492 |
+
},
|
493 |
+
"50317": {
|
494 |
+
"content": "<|extratoken_61|>",
|
495 |
+
"lstrip": false,
|
496 |
+
"normalized": true,
|
497 |
+
"rstrip": false,
|
498 |
+
"single_word": false,
|
499 |
+
"special": false
|
500 |
+
},
|
501 |
+
"50318": {
|
502 |
+
"content": "<|extratoken_62|>",
|
503 |
+
"lstrip": false,
|
504 |
+
"normalized": true,
|
505 |
+
"rstrip": false,
|
506 |
+
"single_word": false,
|
507 |
+
"special": false
|
508 |
+
},
|
509 |
+
"50319": {
|
510 |
+
"content": "<|extratoken_63|>",
|
511 |
+
"lstrip": false,
|
512 |
+
"normalized": true,
|
513 |
+
"rstrip": false,
|
514 |
+
"single_word": false,
|
515 |
+
"special": false
|
516 |
+
},
|
517 |
+
"50320": {
|
518 |
+
"content": "<|extratoken_64|>",
|
519 |
+
"lstrip": false,
|
520 |
+
"normalized": true,
|
521 |
+
"rstrip": false,
|
522 |
+
"single_word": false,
|
523 |
+
"special": false
|
524 |
+
},
|
525 |
+
"50321": {
|
526 |
+
"content": "<|extratoken_65|>",
|
527 |
+
"lstrip": false,
|
528 |
+
"normalized": true,
|
529 |
+
"rstrip": false,
|
530 |
+
"single_word": false,
|
531 |
+
"special": false
|
532 |
+
},
|
533 |
+
"50322": {
|
534 |
+
"content": "<|extratoken_66|>",
|
535 |
+
"lstrip": false,
|
536 |
+
"normalized": true,
|
537 |
+
"rstrip": false,
|
538 |
+
"single_word": false,
|
539 |
+
"special": false
|
540 |
+
},
|
541 |
+
"50323": {
|
542 |
+
"content": "<|extratoken_67|>",
|
543 |
+
"lstrip": false,
|
544 |
+
"normalized": true,
|
545 |
+
"rstrip": false,
|
546 |
+
"single_word": false,
|
547 |
+
"special": false
|
548 |
+
},
|
549 |
+
"50324": {
|
550 |
+
"content": "<|extratoken_68|>",
|
551 |
+
"lstrip": false,
|
552 |
+
"normalized": true,
|
553 |
+
"rstrip": false,
|
554 |
+
"single_word": false,
|
555 |
+
"special": false
|
556 |
+
},
|
557 |
+
"50325": {
|
558 |
+
"content": "<|extratoken_69|>",
|
559 |
+
"lstrip": false,
|
560 |
+
"normalized": true,
|
561 |
+
"rstrip": false,
|
562 |
+
"single_word": false,
|
563 |
+
"special": false
|
564 |
+
},
|
565 |
+
"50326": {
|
566 |
+
"content": "<|extratoken_70|>",
|
567 |
+
"lstrip": false,
|
568 |
+
"normalized": true,
|
569 |
+
"rstrip": false,
|
570 |
+
"single_word": false,
|
571 |
+
"special": false
|
572 |
+
},
|
573 |
+
"50327": {
|
574 |
+
"content": "<|extratoken_71|>",
|
575 |
+
"lstrip": false,
|
576 |
+
"normalized": true,
|
577 |
+
"rstrip": false,
|
578 |
+
"single_word": false,
|
579 |
+
"special": false
|
580 |
+
},
|
581 |
+
"50328": {
|
582 |
+
"content": "<|extratoken_72|>",
|
583 |
+
"lstrip": false,
|
584 |
+
"normalized": true,
|
585 |
+
"rstrip": false,
|
586 |
+
"single_word": false,
|
587 |
+
"special": false
|
588 |
+
},
|
589 |
+
"50329": {
|
590 |
+
"content": "<|extratoken_73|>",
|
591 |
+
"lstrip": false,
|
592 |
+
"normalized": true,
|
593 |
+
"rstrip": false,
|
594 |
+
"single_word": false,
|
595 |
+
"special": false
|
596 |
+
},
|
597 |
+
"50330": {
|
598 |
+
"content": "<|extratoken_74|>",
|
599 |
+
"lstrip": false,
|
600 |
+
"normalized": true,
|
601 |
+
"rstrip": false,
|
602 |
+
"single_word": false,
|
603 |
+
"special": false
|
604 |
+
},
|
605 |
+
"50331": {
|
606 |
+
"content": "<|extratoken_75|>",
|
607 |
+
"lstrip": false,
|
608 |
+
"normalized": true,
|
609 |
+
"rstrip": false,
|
610 |
+
"single_word": false,
|
611 |
+
"special": false
|
612 |
+
},
|
613 |
+
"50332": {
|
614 |
+
"content": "<|extratoken_76|>",
|
615 |
+
"lstrip": false,
|
616 |
+
"normalized": true,
|
617 |
+
"rstrip": false,
|
618 |
+
"single_word": false,
|
619 |
+
"special": false
|
620 |
+
},
|
621 |
+
"50333": {
|
622 |
+
"content": "<|extratoken_77|>",
|
623 |
+
"lstrip": false,
|
624 |
+
"normalized": true,
|
625 |
+
"rstrip": false,
|
626 |
+
"single_word": false,
|
627 |
+
"special": false
|
628 |
+
},
|
629 |
+
"50334": {
|
630 |
+
"content": "<|extratoken_78|>",
|
631 |
+
"lstrip": false,
|
632 |
+
"normalized": true,
|
633 |
+
"rstrip": false,
|
634 |
+
"single_word": false,
|
635 |
+
"special": false
|
636 |
+
},
|
637 |
+
"50335": {
|
638 |
+
"content": "<|extratoken_79|>",
|
639 |
+
"lstrip": false,
|
640 |
+
"normalized": true,
|
641 |
+
"rstrip": false,
|
642 |
+
"single_word": false,
|
643 |
+
"special": false
|
644 |
+
},
|
645 |
+
"50336": {
|
646 |
+
"content": "<|extratoken_80|>",
|
647 |
+
"lstrip": false,
|
648 |
+
"normalized": true,
|
649 |
+
"rstrip": false,
|
650 |
+
"single_word": false,
|
651 |
+
"special": false
|
652 |
+
},
|
653 |
+
"50337": {
|
654 |
+
"content": "<|extratoken_81|>",
|
655 |
+
"lstrip": false,
|
656 |
+
"normalized": true,
|
657 |
+
"rstrip": false,
|
658 |
+
"single_word": false,
|
659 |
+
"special": false
|
660 |
+
},
|
661 |
+
"50338": {
|
662 |
+
"content": "<|extratoken_82|>",
|
663 |
+
"lstrip": false,
|
664 |
+
"normalized": true,
|
665 |
+
"rstrip": false,
|
666 |
+
"single_word": false,
|
667 |
+
"special": false
|
668 |
+
},
|
669 |
+
"50339": {
|
670 |
+
"content": "<|extratoken_83|>",
|
671 |
+
"lstrip": false,
|
672 |
+
"normalized": true,
|
673 |
+
"rstrip": false,
|
674 |
+
"single_word": false,
|
675 |
+
"special": false
|
676 |
+
},
|
677 |
+
"50340": {
|
678 |
+
"content": "<|extratoken_84|>",
|
679 |
+
"lstrip": false,
|
680 |
+
"normalized": true,
|
681 |
+
"rstrip": false,
|
682 |
+
"single_word": false,
|
683 |
+
"special": false
|
684 |
+
},
|
685 |
+
"50341": {
|
686 |
+
"content": "<|extratoken_85|>",
|
687 |
+
"lstrip": false,
|
688 |
+
"normalized": true,
|
689 |
+
"rstrip": false,
|
690 |
+
"single_word": false,
|
691 |
+
"special": false
|
692 |
+
},
|
693 |
+
"50342": {
|
694 |
+
"content": "<|extratoken_86|>",
|
695 |
+
"lstrip": false,
|
696 |
+
"normalized": true,
|
697 |
+
"rstrip": false,
|
698 |
+
"single_word": false,
|
699 |
+
"special": false
|
700 |
+
},
|
701 |
+
"50343": {
|
702 |
+
"content": "<|extratoken_87|>",
|
703 |
+
"lstrip": false,
|
704 |
+
"normalized": true,
|
705 |
+
"rstrip": false,
|
706 |
+
"single_word": false,
|
707 |
+
"special": false
|
708 |
+
},
|
709 |
+
"50344": {
|
710 |
+
"content": "<|extratoken_88|>",
|
711 |
+
"lstrip": false,
|
712 |
+
"normalized": true,
|
713 |
+
"rstrip": false,
|
714 |
+
"single_word": false,
|
715 |
+
"special": false
|
716 |
+
},
|
717 |
+
"50345": {
|
718 |
+
"content": "<|extratoken_89|>",
|
719 |
+
"lstrip": false,
|
720 |
+
"normalized": true,
|
721 |
+
"rstrip": false,
|
722 |
+
"single_word": false,
|
723 |
+
"special": false
|
724 |
+
},
|
725 |
+
"50346": {
|
726 |
+
"content": "<|extratoken_90|>",
|
727 |
+
"lstrip": false,
|
728 |
+
"normalized": true,
|
729 |
+
"rstrip": false,
|
730 |
+
"single_word": false,
|
731 |
+
"special": false
|
732 |
+
},
|
733 |
+
"50347": {
|
734 |
+
"content": "<|extratoken_91|>",
|
735 |
+
"lstrip": false,
|
736 |
+
"normalized": true,
|
737 |
+
"rstrip": false,
|
738 |
+
"single_word": false,
|
739 |
+
"special": false
|
740 |
+
},
|
741 |
+
"50348": {
|
742 |
+
"content": "<|extratoken_92|>",
|
743 |
+
"lstrip": false,
|
744 |
+
"normalized": true,
|
745 |
+
"rstrip": false,
|
746 |
+
"single_word": false,
|
747 |
+
"special": false
|
748 |
+
},
|
749 |
+
"50349": {
|
750 |
+
"content": "<|extratoken_93|>",
|
751 |
+
"lstrip": false,
|
752 |
+
"normalized": true,
|
753 |
+
"rstrip": false,
|
754 |
+
"single_word": false,
|
755 |
+
"special": false
|
756 |
+
},
|
757 |
+
"50350": {
|
758 |
+
"content": "<|extratoken_94|>",
|
759 |
+
"lstrip": false,
|
760 |
+
"normalized": true,
|
761 |
+
"rstrip": false,
|
762 |
+
"single_word": false,
|
763 |
+
"special": false
|
764 |
+
},
|
765 |
+
"50351": {
|
766 |
+
"content": "<|extratoken_95|>",
|
767 |
+
"lstrip": false,
|
768 |
+
"normalized": true,
|
769 |
+
"rstrip": false,
|
770 |
+
"single_word": false,
|
771 |
+
"special": false
|
772 |
+
},
|
773 |
+
"50352": {
|
774 |
+
"content": "<|extratoken_96|>",
|
775 |
+
"lstrip": false,
|
776 |
+
"normalized": true,
|
777 |
+
"rstrip": false,
|
778 |
+
"single_word": false,
|
779 |
+
"special": false
|
780 |
+
},
|
781 |
+
"50353": {
|
782 |
+
"content": "<|extratoken_97|>",
|
783 |
+
"lstrip": false,
|
784 |
+
"normalized": true,
|
785 |
+
"rstrip": false,
|
786 |
+
"single_word": false,
|
787 |
+
"special": false
|
788 |
+
},
|
789 |
+
"50354": {
|
790 |
+
"content": "<|extratoken_98|>",
|
791 |
+
"lstrip": false,
|
792 |
+
"normalized": true,
|
793 |
+
"rstrip": false,
|
794 |
+
"single_word": false,
|
795 |
+
"special": false
|
796 |
+
},
|
797 |
+
"50355": {
|
798 |
+
"content": "<|extratoken_99|>",
|
799 |
+
"lstrip": false,
|
800 |
+
"normalized": true,
|
801 |
+
"rstrip": false,
|
802 |
+
"single_word": false,
|
803 |
+
"special": false
|
804 |
+
},
|
805 |
+
"50356": {
|
806 |
+
"content": "<|extratoken_100|>",
|
807 |
+
"lstrip": false,
|
808 |
+
"normalized": true,
|
809 |
+
"rstrip": false,
|
810 |
+
"single_word": false,
|
811 |
+
"special": false
|
812 |
+
},
|
813 |
+
"50357": {
|
814 |
+
"content": "<|extratoken_101|>",
|
815 |
+
"lstrip": false,
|
816 |
+
"normalized": true,
|
817 |
+
"rstrip": false,
|
818 |
+
"single_word": false,
|
819 |
+
"special": false
|
820 |
+
},
|
821 |
+
"50358": {
|
822 |
+
"content": "<|extratoken_102|>",
|
823 |
+
"lstrip": false,
|
824 |
+
"normalized": true,
|
825 |
+
"rstrip": false,
|
826 |
+
"single_word": false,
|
827 |
+
"special": false
|
828 |
+
},
|
829 |
+
"50359": {
|
830 |
+
"content": "<|extratoken_103|>",
|
831 |
+
"lstrip": false,
|
832 |
+
"normalized": true,
|
833 |
+
"rstrip": false,
|
834 |
+
"single_word": false,
|
835 |
+
"special": false
|
836 |
+
},
|
837 |
+
"50360": {
|
838 |
+
"content": "<|extratoken_104|>",
|
839 |
+
"lstrip": false,
|
840 |
+
"normalized": true,
|
841 |
+
"rstrip": false,
|
842 |
+
"single_word": false,
|
843 |
+
"special": false
|
844 |
+
},
|
845 |
+
"50361": {
|
846 |
+
"content": "<|extratoken_105|>",
|
847 |
+
"lstrip": false,
|
848 |
+
"normalized": true,
|
849 |
+
"rstrip": false,
|
850 |
+
"single_word": false,
|
851 |
+
"special": false
|
852 |
+
},
|
853 |
+
"50362": {
|
854 |
+
"content": "<|extratoken_106|>",
|
855 |
+
"lstrip": false,
|
856 |
+
"normalized": true,
|
857 |
+
"rstrip": false,
|
858 |
+
"single_word": false,
|
859 |
+
"special": false
|
860 |
+
},
|
861 |
+
"50363": {
|
862 |
+
"content": "<|extratoken_107|>",
|
863 |
+
"lstrip": false,
|
864 |
+
"normalized": true,
|
865 |
+
"rstrip": false,
|
866 |
+
"single_word": false,
|
867 |
+
"special": false
|
868 |
+
},
|
869 |
+
"50364": {
|
870 |
+
"content": "<|extratoken_108|>",
|
871 |
+
"lstrip": false,
|
872 |
+
"normalized": true,
|
873 |
+
"rstrip": false,
|
874 |
+
"single_word": false,
|
875 |
+
"special": false
|
876 |
+
},
|
877 |
+
"50365": {
|
878 |
+
"content": "<|extratoken_109|>",
|
879 |
+
"lstrip": false,
|
880 |
+
"normalized": true,
|
881 |
+
"rstrip": false,
|
882 |
+
"single_word": false,
|
883 |
+
"special": false
|
884 |
+
},
|
885 |
+
"50366": {
|
886 |
+
"content": "<|extratoken_110|>",
|
887 |
+
"lstrip": false,
|
888 |
+
"normalized": true,
|
889 |
+
"rstrip": false,
|
890 |
+
"single_word": false,
|
891 |
+
"special": false
|
892 |
+
},
|
893 |
+
"50367": {
|
894 |
+
"content": "<|extratoken_111|>",
|
895 |
+
"lstrip": false,
|
896 |
+
"normalized": true,
|
897 |
+
"rstrip": false,
|
898 |
+
"single_word": false,
|
899 |
+
"special": false
|
900 |
+
},
|
901 |
+
"50368": {
|
902 |
+
"content": "<|extratoken_112|>",
|
903 |
+
"lstrip": false,
|
904 |
+
"normalized": true,
|
905 |
+
"rstrip": false,
|
906 |
+
"single_word": false,
|
907 |
+
"special": false
|
908 |
+
},
|
909 |
+
"50369": {
|
910 |
+
"content": "<|extratoken_113|>",
|
911 |
+
"lstrip": false,
|
912 |
+
"normalized": true,
|
913 |
+
"rstrip": false,
|
914 |
+
"single_word": false,
|
915 |
+
"special": false
|
916 |
+
},
|
917 |
+
"50370": {
|
918 |
+
"content": "<|extratoken_114|>",
|
919 |
+
"lstrip": false,
|
920 |
+
"normalized": true,
|
921 |
+
"rstrip": false,
|
922 |
+
"single_word": false,
|
923 |
+
"special": false
|
924 |
+
},
|
925 |
+
"50371": {
|
926 |
+
"content": "<|extratoken_115|>",
|
927 |
+
"lstrip": false,
|
928 |
+
"normalized": true,
|
929 |
+
"rstrip": false,
|
930 |
+
"single_word": false,
|
931 |
+
"special": false
|
932 |
+
},
|
933 |
+
"50372": {
|
934 |
+
"content": "<|extratoken_116|>",
|
935 |
+
"lstrip": false,
|
936 |
+
"normalized": true,
|
937 |
+
"rstrip": false,
|
938 |
+
"single_word": false,
|
939 |
+
"special": false
|
940 |
+
},
|
941 |
+
"50373": {
|
942 |
+
"content": "<|extratoken_117|>",
|
943 |
+
"lstrip": false,
|
944 |
+
"normalized": true,
|
945 |
+
"rstrip": false,
|
946 |
+
"single_word": false,
|
947 |
+
"special": false
|
948 |
+
},
|
949 |
+
"50374": {
|
950 |
+
"content": "<|extratoken_118|>",
|
951 |
+
"lstrip": false,
|
952 |
+
"normalized": true,
|
953 |
+
"rstrip": false,
|
954 |
+
"single_word": false,
|
955 |
+
"special": false
|
956 |
+
},
|
957 |
+
"50375": {
|
958 |
+
"content": "<|extratoken_119|>",
|
959 |
+
"lstrip": false,
|
960 |
+
"normalized": true,
|
961 |
+
"rstrip": false,
|
962 |
+
"single_word": false,
|
963 |
+
"special": false
|
964 |
+
},
|
965 |
+
"50376": {
|
966 |
+
"content": "<|extratoken_120|>",
|
967 |
+
"lstrip": false,
|
968 |
+
"normalized": true,
|
969 |
+
"rstrip": false,
|
970 |
+
"single_word": false,
|
971 |
+
"special": false
|
972 |
+
},
|
973 |
+
"50377": {
|
974 |
+
"content": "<|extratoken_121|>",
|
975 |
+
"lstrip": false,
|
976 |
+
"normalized": true,
|
977 |
+
"rstrip": false,
|
978 |
+
"single_word": false,
|
979 |
+
"special": false
|
980 |
+
},
|
981 |
+
"50378": {
|
982 |
+
"content": "<|extratoken_122|>",
|
983 |
+
"lstrip": false,
|
984 |
+
"normalized": true,
|
985 |
+
"rstrip": false,
|
986 |
+
"single_word": false,
|
987 |
+
"special": false
|
988 |
+
},
|
989 |
+
"50379": {
|
990 |
+
"content": "<|extratoken_123|>",
|
991 |
+
"lstrip": false,
|
992 |
+
"normalized": true,
|
993 |
+
"rstrip": false,
|
994 |
+
"single_word": false,
|
995 |
+
"special": false
|
996 |
+
},
|
997 |
+
"50380": {
|
998 |
+
"content": "<|extratoken_124|>",
|
999 |
+
"lstrip": false,
|
1000 |
+
"normalized": true,
|
1001 |
+
"rstrip": false,
|
1002 |
+
"single_word": false,
|
1003 |
+
"special": false
|
1004 |
+
},
|
1005 |
+
"50381": {
|
1006 |
+
"content": "<|extratoken_125|>",
|
1007 |
+
"lstrip": false,
|
1008 |
+
"normalized": true,
|
1009 |
+
"rstrip": false,
|
1010 |
+
"single_word": false,
|
1011 |
+
"special": false
|
1012 |
+
},
|
1013 |
+
"50382": {
|
1014 |
+
"content": "<|extratoken_126|>",
|
1015 |
+
"lstrip": false,
|
1016 |
+
"normalized": true,
|
1017 |
+
"rstrip": false,
|
1018 |
+
"single_word": false,
|
1019 |
+
"special": false
|
1020 |
+
},
|
1021 |
+
"50383": {
|
1022 |
+
"content": "<|extratoken_127|>",
|
1023 |
+
"lstrip": false,
|
1024 |
+
"normalized": true,
|
1025 |
+
"rstrip": false,
|
1026 |
+
"single_word": false,
|
1027 |
+
"special": false
|
1028 |
+
},
|
1029 |
+
"50384": {
|
1030 |
+
"content": "<|extratoken_128|>",
|
1031 |
+
"lstrip": false,
|
1032 |
+
"normalized": true,
|
1033 |
+
"rstrip": false,
|
1034 |
+
"single_word": false,
|
1035 |
+
"special": false
|
1036 |
+
},
|
1037 |
+
"50385": {
|
1038 |
+
"content": "<|extratoken_129|>",
|
1039 |
+
"lstrip": false,
|
1040 |
+
"normalized": true,
|
1041 |
+
"rstrip": false,
|
1042 |
+
"single_word": false,
|
1043 |
+
"special": false
|
1044 |
+
},
|
1045 |
+
"50386": {
|
1046 |
+
"content": "<|extratoken_130|>",
|
1047 |
+
"lstrip": false,
|
1048 |
+
"normalized": true,
|
1049 |
+
"rstrip": false,
|
1050 |
+
"single_word": false,
|
1051 |
+
"special": false
|
1052 |
+
},
|
1053 |
+
"50387": {
|
1054 |
+
"content": "<|extratoken_131|>",
|
1055 |
+
"lstrip": false,
|
1056 |
+
"normalized": true,
|
1057 |
+
"rstrip": false,
|
1058 |
+
"single_word": false,
|
1059 |
+
"special": false
|
1060 |
+
},
|
1061 |
+
"50388": {
|
1062 |
+
"content": "<|extratoken_132|>",
|
1063 |
+
"lstrip": false,
|
1064 |
+
"normalized": true,
|
1065 |
+
"rstrip": false,
|
1066 |
+
"single_word": false,
|
1067 |
+
"special": false
|
1068 |
+
},
|
1069 |
+
"50389": {
|
1070 |
+
"content": "<|extratoken_133|>",
|
1071 |
+
"lstrip": false,
|
1072 |
+
"normalized": true,
|
1073 |
+
"rstrip": false,
|
1074 |
+
"single_word": false,
|
1075 |
+
"special": false
|
1076 |
+
},
|
1077 |
+
"50390": {
|
1078 |
+
"content": "<|extratoken_134|>",
|
1079 |
+
"lstrip": false,
|
1080 |
+
"normalized": true,
|
1081 |
+
"rstrip": false,
|
1082 |
+
"single_word": false,
|
1083 |
+
"special": false
|
1084 |
+
},
|
1085 |
+
"50391": {
|
1086 |
+
"content": "<|extratoken_135|>",
|
1087 |
+
"lstrip": false,
|
1088 |
+
"normalized": true,
|
1089 |
+
"rstrip": false,
|
1090 |
+
"single_word": false,
|
1091 |
+
"special": false
|
1092 |
+
},
|
1093 |
+
"50392": {
|
1094 |
+
"content": "<|extratoken_136|>",
|
1095 |
+
"lstrip": false,
|
1096 |
+
"normalized": true,
|
1097 |
+
"rstrip": false,
|
1098 |
+
"single_word": false,
|
1099 |
+
"special": false
|
1100 |
+
},
|
1101 |
+
"50393": {
|
1102 |
+
"content": "<|extratoken_137|>",
|
1103 |
+
"lstrip": false,
|
1104 |
+
"normalized": true,
|
1105 |
+
"rstrip": false,
|
1106 |
+
"single_word": false,
|
1107 |
+
"special": false
|
1108 |
+
},
|
1109 |
+
"50394": {
|
1110 |
+
"content": "<|extratoken_138|>",
|
1111 |
+
"lstrip": false,
|
1112 |
+
"normalized": true,
|
1113 |
+
"rstrip": false,
|
1114 |
+
"single_word": false,
|
1115 |
+
"special": false
|
1116 |
+
},
|
1117 |
+
"50395": {
|
1118 |
+
"content": "<|extratoken_139|>",
|
1119 |
+
"lstrip": false,
|
1120 |
+
"normalized": true,
|
1121 |
+
"rstrip": false,
|
1122 |
+
"single_word": false,
|
1123 |
+
"special": false
|
1124 |
+
},
|
1125 |
+
"50396": {
|
1126 |
+
"content": "<|extratoken_140|>",
|
1127 |
+
"lstrip": false,
|
1128 |
+
"normalized": true,
|
1129 |
+
"rstrip": false,
|
1130 |
+
"single_word": false,
|
1131 |
+
"special": false
|
1132 |
+
},
|
1133 |
+
"50397": {
|
1134 |
+
"content": "<|extratoken_141|>",
|
1135 |
+
"lstrip": false,
|
1136 |
+
"normalized": true,
|
1137 |
+
"rstrip": false,
|
1138 |
+
"single_word": false,
|
1139 |
+
"special": false
|
1140 |
+
},
|
1141 |
+
"50398": {
|
1142 |
+
"content": "<|extratoken_142|>",
|
1143 |
+
"lstrip": false,
|
1144 |
+
"normalized": true,
|
1145 |
+
"rstrip": false,
|
1146 |
+
"single_word": false,
|
1147 |
+
"special": false
|
1148 |
+
},
|
1149 |
+
"50399": {
|
1150 |
+
"content": "<|extratoken_143|>",
|
1151 |
+
"lstrip": false,
|
1152 |
+
"normalized": true,
|
1153 |
+
"rstrip": false,
|
1154 |
+
"single_word": false,
|
1155 |
+
"special": false
|
1156 |
+
}
|
1157 |
+
},
|
1158 |
+
"bos_token": "<|endoftext|>",
|
1159 |
+
"clean_up_tokenization_spaces": true,
|
1160 |
+
"eos_token": "<|endoftext|>",
|
1161 |
+
"errors": "replace",
|
1162 |
+
"model_max_length": 2048,
|
1163 |
+
"pad_token": null,
|
1164 |
+
"tokenizer_class": "GPT2Tokenizer",
|
1165 |
+
"unk_token": "<|endoftext|>"
|
1166 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|