metadata
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: NLP-at-home
results: []
NLP-at-home
This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1836
- F1: 0.8284
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
1.0833 | 1.0 | 24 | 0.6880 | 0.6592 |
0.5737 | 2.0 | 48 | 0.5213 | 0.8235 |
0.3165 | 3.0 | 72 | 0.5841 | 0.7939 |
0.2087 | 4.0 | 96 | 0.6425 | 0.7846 |
0.1377 | 5.0 | 120 | 0.7989 | 0.7536 |
0.0835 | 6.0 | 144 | 0.7516 | 0.8257 |
0.0963 | 7.0 | 168 | 0.7099 | 0.8243 |
0.0558 | 8.0 | 192 | 0.7994 | 0.7905 |
0.0389 | 9.0 | 216 | 0.7475 | 0.8494 |
0.057 | 10.0 | 240 | 0.7741 | 0.8265 |
0.0435 | 11.0 | 264 | 1.1178 | 0.7826 |
0.0458 | 12.0 | 288 | 0.9156 | 0.7847 |
0.033 | 13.0 | 312 | 0.9355 | 0.8198 |
0.0556 | 14.0 | 336 | 0.9090 | 0.8152 |
0.0139 | 15.0 | 360 | 0.9933 | 0.7950 |
0.0137 | 16.0 | 384 | 1.1050 | 0.7889 |
0.0173 | 17.0 | 408 | 1.1387 | 0.7836 |
0.0221 | 18.0 | 432 | 1.0860 | 0.8072 |
0.0206 | 19.0 | 456 | 1.0689 | 0.8120 |
0.0125 | 20.0 | 480 | 0.9927 | 0.8087 |
0.0034 | 21.0 | 504 | 1.1213 | 0.7919 |
0.0052 | 22.0 | 528 | 1.2096 | 0.7969 |
0.0005 | 23.0 | 552 | 1.1544 | 0.8132 |
0.0004 | 24.0 | 576 | 1.1947 | 0.8143 |
0.0017 | 25.0 | 600 | 1.2692 | 0.7957 |
0.0003 | 26.0 | 624 | 1.2705 | 0.7981 |
0.0004 | 27.0 | 648 | 1.4028 | 0.7617 |
0.0003 | 28.0 | 672 | 1.2183 | 0.8193 |
0.0038 | 29.0 | 696 | 1.2414 | 0.8106 |
0.0002 | 30.0 | 720 | 1.3012 | 0.8022 |
0.0008 | 31.0 | 744 | 1.1945 | 0.8120 |
0.0002 | 32.0 | 768 | 1.1859 | 0.8125 |
0.0002 | 33.0 | 792 | 1.1988 | 0.8078 |
0.0004 | 34.0 | 816 | 1.2846 | 0.8144 |
0.0016 | 35.0 | 840 | 1.2518 | 0.8121 |
0.0002 | 36.0 | 864 | 1.2062 | 0.8254 |
0.0002 | 37.0 | 888 | 1.2049 | 0.8197 |
0.0002 | 38.0 | 912 | 1.2056 | 0.8254 |
0.0001 | 39.0 | 936 | 1.2062 | 0.8254 |
0.0001 | 40.0 | 960 | 1.1666 | 0.8378 |
0.0001 | 41.0 | 984 | 1.1612 | 0.8378 |
0.0001 | 42.0 | 1008 | 1.1614 | 0.8378 |
0.0001 | 43.0 | 1032 | 1.1739 | 0.8277 |
0.0001 | 44.0 | 1056 | 1.1778 | 0.8277 |
0.0001 | 45.0 | 1080 | 1.1808 | 0.8284 |
0.0001 | 46.0 | 1104 | 1.1816 | 0.8284 |
0.0001 | 47.0 | 1128 | 1.1825 | 0.8284 |
0.0001 | 48.0 | 1152 | 1.1833 | 0.8284 |
0.0001 | 49.0 | 1176 | 1.1836 | 0.8284 |
0.0001 | 50.0 | 1200 | 1.1836 | 0.8284 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1