nrshoudi's picture
update model card README.md
9f95039
|
raw
history blame
3.55 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-Arabic-colab
    results: []

wav2vec2-large-xls-r-300m-Arabic-colab

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0016
  • Wer: 0.0180
  • Cer: 0.0050

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 16
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
17.4389 1.0 51 5.2001 1.0 1.0
3.9365 2.0 102 3.1379 1.0 1.0
3.1693 3.0 153 3.1153 1.0 1.0
3.1436 4.0 204 3.0695 1.0 1.0
3.0914 5.0 255 2.9734 1.0 1.0
2.9509 6.0 306 2.7532 1.0 1.0
2.4865 7.0 357 1.8412 1.0 0.9310
1.2609 8.0 408 0.3920 0.5536 0.1712
0.4001 9.0 459 0.0803 0.1065 0.0262
0.1689 10.0 510 0.0340 0.0469 0.0119
0.1134 11.0 561 0.0240 0.0510 0.0150
0.0756 12.0 612 0.0140 0.0355 0.0106
0.0612 13.0 663 0.0098 0.0289 0.0086
0.0472 14.0 714 0.0087 0.0245 0.0066
0.0443 15.0 765 0.0075 0.0242 0.0066
0.0404 16.0 816 0.0072 0.0275 0.0079
0.0329 17.0 867 0.0056 0.0146 0.0040
0.0322 18.0 918 0.0058 0.0165 0.0044
0.0277 19.0 969 0.0056 0.0226 0.0063
0.0247 20.0 1020 0.0040 0.0180 0.0045
0.0234 21.0 1071 0.0050 0.0179 0.0052
0.0186 22.0 1122 0.0034 0.0138 0.0037
0.0178 23.0 1173 0.0032 0.0139 0.0039
0.0163 24.0 1224 0.0025 0.0158 0.0042
0.0165 25.0 1275 0.0023 0.0163 0.0043
0.0138 26.0 1326 0.0019 0.0141 0.0036
0.0145 27.0 1377 0.0019 0.0183 0.0047
0.0128 28.0 1428 0.0019 0.0178 0.0048
0.012 29.0 1479 0.0017 0.0177 0.0048
0.0121 30.0 1530 0.0016 0.0180 0.0050

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2