metadata
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- mteb
model-index:
- name: bge_micro
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 67.76119402985074
- type: ap
value: 29.637849284211114
- type: f1
value: 61.31181187111905
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 79.7547
- type: ap
value: 74.21401629809145
- type: f1
value: 79.65319615433783
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 37.452000000000005
- type: f1
value: 37.0245198854966
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 31.152
- type: map_at_10
value: 46.702
- type: map_at_100
value: 47.563
- type: map_at_1000
value: 47.567
- type: map_at_3
value: 42.058
- type: map_at_5
value: 44.608
- type: mrr_at_1
value: 32.006
- type: mrr_at_10
value: 47.064
- type: mrr_at_100
value: 47.910000000000004
- type: mrr_at_1000
value: 47.915
- type: mrr_at_3
value: 42.283
- type: mrr_at_5
value: 44.968
- type: ndcg_at_1
value: 31.152
- type: ndcg_at_10
value: 55.308
- type: ndcg_at_100
value: 58.965
- type: ndcg_at_1000
value: 59.067
- type: ndcg_at_3
value: 45.698
- type: ndcg_at_5
value: 50.296
- type: precision_at_1
value: 31.152
- type: precision_at_10
value: 8.279
- type: precision_at_100
value: 0.987
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 18.753
- type: precision_at_5
value: 13.485
- type: recall_at_1
value: 31.152
- type: recall_at_10
value: 82.788
- type: recall_at_100
value: 98.72
- type: recall_at_1000
value: 99.502
- type: recall_at_3
value: 56.259
- type: recall_at_5
value: 67.425
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 44.52692241938116
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 33.245710292773595
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 58.08493637155168
- type: mrr
value: 71.94378490084861
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 84.1602804378326
- type: cos_sim_spearman
value: 82.92478106365587
- type: euclidean_pearson
value: 82.27930167277077
- type: euclidean_spearman
value: 82.18560759458093
- type: manhattan_pearson
value: 82.34277425888187
- type: manhattan_spearman
value: 81.72776583704467
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 81.17207792207792
- type: f1
value: 81.09893836310513
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 36.109308463095516
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 28.06048212317168
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 28.233999999999998
- type: map_at_10
value: 38.092999999999996
- type: map_at_100
value: 39.473
- type: map_at_1000
value: 39.614
- type: map_at_3
value: 34.839
- type: map_at_5
value: 36.523
- type: mrr_at_1
value: 35.193000000000005
- type: mrr_at_10
value: 44.089
- type: mrr_at_100
value: 44.927
- type: mrr_at_1000
value: 44.988
- type: mrr_at_3
value: 41.559000000000005
- type: mrr_at_5
value: 43.162
- type: ndcg_at_1
value: 35.193000000000005
- type: ndcg_at_10
value: 44.04
- type: ndcg_at_100
value: 49.262
- type: ndcg_at_1000
value: 51.847
- type: ndcg_at_3
value: 39.248
- type: ndcg_at_5
value: 41.298
- type: precision_at_1
value: 35.193000000000005
- type: precision_at_10
value: 8.555
- type: precision_at_100
value: 1.3820000000000001
- type: precision_at_1000
value: 0.189
- type: precision_at_3
value: 19.123
- type: precision_at_5
value: 13.648
- type: recall_at_1
value: 28.233999999999998
- type: recall_at_10
value: 55.094
- type: recall_at_100
value: 76.85300000000001
- type: recall_at_1000
value: 94.163
- type: recall_at_3
value: 40.782000000000004
- type: recall_at_5
value: 46.796
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 21.538
- type: map_at_10
value: 28.449
- type: map_at_100
value: 29.471000000000004
- type: map_at_1000
value: 29.599999999999998
- type: map_at_3
value: 26.371
- type: map_at_5
value: 27.58
- type: mrr_at_1
value: 26.815
- type: mrr_at_10
value: 33.331
- type: mrr_at_100
value: 34.114
- type: mrr_at_1000
value: 34.182
- type: mrr_at_3
value: 31.561
- type: mrr_at_5
value: 32.608
- type: ndcg_at_1
value: 26.815
- type: ndcg_at_10
value: 32.67
- type: ndcg_at_100
value: 37.039
- type: ndcg_at_1000
value: 39.769
- type: ndcg_at_3
value: 29.523
- type: ndcg_at_5
value: 31.048
- type: precision_at_1
value: 26.815
- type: precision_at_10
value: 5.955
- type: precision_at_100
value: 1.02
- type: precision_at_1000
value: 0.152
- type: precision_at_3
value: 14.033999999999999
- type: precision_at_5
value: 9.911
- type: recall_at_1
value: 21.538
- type: recall_at_10
value: 40.186
- type: recall_at_100
value: 58.948
- type: recall_at_1000
value: 77.158
- type: recall_at_3
value: 30.951
- type: recall_at_5
value: 35.276
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 35.211999999999996
- type: map_at_10
value: 46.562
- type: map_at_100
value: 47.579
- type: map_at_1000
value: 47.646
- type: map_at_3
value: 43.485
- type: map_at_5
value: 45.206
- type: mrr_at_1
value: 40.627
- type: mrr_at_10
value: 49.928
- type: mrr_at_100
value: 50.647
- type: mrr_at_1000
value: 50.685
- type: mrr_at_3
value: 47.513
- type: mrr_at_5
value: 48.958
- type: ndcg_at_1
value: 40.627
- type: ndcg_at_10
value: 52.217
- type: ndcg_at_100
value: 56.423
- type: ndcg_at_1000
value: 57.821999999999996
- type: ndcg_at_3
value: 46.949000000000005
- type: ndcg_at_5
value: 49.534
- type: precision_at_1
value: 40.627
- type: precision_at_10
value: 8.476
- type: precision_at_100
value: 1.15
- type: precision_at_1000
value: 0.132
- type: precision_at_3
value: 21.003
- type: precision_at_5
value: 14.469999999999999
- type: recall_at_1
value: 35.211999999999996
- type: recall_at_10
value: 65.692
- type: recall_at_100
value: 84.011
- type: recall_at_1000
value: 94.03099999999999
- type: recall_at_3
value: 51.404
- type: recall_at_5
value: 57.882
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.09
- type: map_at_10
value: 29.516
- type: map_at_100
value: 30.462
- type: map_at_1000
value: 30.56
- type: map_at_3
value: 26.945000000000004
- type: map_at_5
value: 28.421999999999997
- type: mrr_at_1
value: 23.616
- type: mrr_at_10
value: 31.221
- type: mrr_at_100
value: 32.057
- type: mrr_at_1000
value: 32.137
- type: mrr_at_3
value: 28.738000000000003
- type: mrr_at_5
value: 30.156
- type: ndcg_at_1
value: 23.616
- type: ndcg_at_10
value: 33.97
- type: ndcg_at_100
value: 38.806000000000004
- type: ndcg_at_1000
value: 41.393
- type: ndcg_at_3
value: 28.908
- type: ndcg_at_5
value: 31.433
- type: precision_at_1
value: 23.616
- type: precision_at_10
value: 5.299
- type: precision_at_100
value: 0.812
- type: precision_at_1000
value: 0.107
- type: precision_at_3
value: 12.015
- type: precision_at_5
value: 8.701
- type: recall_at_1
value: 22.09
- type: recall_at_10
value: 46.089999999999996
- type: recall_at_100
value: 68.729
- type: recall_at_1000
value: 88.435
- type: recall_at_3
value: 32.584999999999994
- type: recall_at_5
value: 38.550000000000004
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 15.469
- type: map_at_10
value: 22.436
- type: map_at_100
value: 23.465
- type: map_at_1000
value: 23.608999999999998
- type: map_at_3
value: 19.716
- type: map_at_5
value: 21.182000000000002
- type: mrr_at_1
value: 18.905
- type: mrr_at_10
value: 26.55
- type: mrr_at_100
value: 27.46
- type: mrr_at_1000
value: 27.553
- type: mrr_at_3
value: 23.921999999999997
- type: mrr_at_5
value: 25.302999999999997
- type: ndcg_at_1
value: 18.905
- type: ndcg_at_10
value: 27.437
- type: ndcg_at_100
value: 32.555
- type: ndcg_at_1000
value: 35.885
- type: ndcg_at_3
value: 22.439
- type: ndcg_at_5
value: 24.666
- type: precision_at_1
value: 18.905
- type: precision_at_10
value: 5.2490000000000006
- type: precision_at_100
value: 0.889
- type: precision_at_1000
value: 0.131
- type: precision_at_3
value: 10.862
- type: precision_at_5
value: 8.085
- type: recall_at_1
value: 15.469
- type: recall_at_10
value: 38.706
- type: recall_at_100
value: 61.242
- type: recall_at_1000
value: 84.84
- type: recall_at_3
value: 24.973
- type: recall_at_5
value: 30.603
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 24.918000000000003
- type: map_at_10
value: 34.296
- type: map_at_100
value: 35.632000000000005
- type: map_at_1000
value: 35.748999999999995
- type: map_at_3
value: 31.304
- type: map_at_5
value: 33.166000000000004
- type: mrr_at_1
value: 30.703000000000003
- type: mrr_at_10
value: 39.655
- type: mrr_at_100
value: 40.569
- type: mrr_at_1000
value: 40.621
- type: mrr_at_3
value: 37.023
- type: mrr_at_5
value: 38.664
- type: ndcg_at_1
value: 30.703000000000003
- type: ndcg_at_10
value: 39.897
- type: ndcg_at_100
value: 45.777
- type: ndcg_at_1000
value: 48.082
- type: ndcg_at_3
value: 35.122
- type: ndcg_at_5
value: 37.691
- type: precision_at_1
value: 30.703000000000003
- type: precision_at_10
value: 7.305000000000001
- type: precision_at_100
value: 1.208
- type: precision_at_1000
value: 0.159
- type: precision_at_3
value: 16.811
- type: precision_at_5
value: 12.203999999999999
- type: recall_at_1
value: 24.918000000000003
- type: recall_at_10
value: 51.31
- type: recall_at_100
value: 76.534
- type: recall_at_1000
value: 91.911
- type: recall_at_3
value: 37.855
- type: recall_at_5
value: 44.493
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.416
- type: map_at_10
value: 30.474
- type: map_at_100
value: 31.759999999999998
- type: map_at_1000
value: 31.891000000000002
- type: map_at_3
value: 27.728
- type: map_at_5
value: 29.247
- type: mrr_at_1
value: 28.881
- type: mrr_at_10
value: 36.418
- type: mrr_at_100
value: 37.347
- type: mrr_at_1000
value: 37.415
- type: mrr_at_3
value: 33.942
- type: mrr_at_5
value: 35.386
- type: ndcg_at_1
value: 28.881
- type: ndcg_at_10
value: 35.812
- type: ndcg_at_100
value: 41.574
- type: ndcg_at_1000
value: 44.289
- type: ndcg_at_3
value: 31.239
- type: ndcg_at_5
value: 33.302
- type: precision_at_1
value: 28.881
- type: precision_at_10
value: 6.598
- type: precision_at_100
value: 1.1079999999999999
- type: precision_at_1000
value: 0.151
- type: precision_at_3
value: 14.954
- type: precision_at_5
value: 10.776
- type: recall_at_1
value: 22.416
- type: recall_at_10
value: 46.243
- type: recall_at_100
value: 71.352
- type: recall_at_1000
value: 90.034
- type: recall_at_3
value: 32.873000000000005
- type: recall_at_5
value: 38.632
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.528166666666667
- type: map_at_10
value: 30.317833333333333
- type: map_at_100
value: 31.44108333333333
- type: map_at_1000
value: 31.566666666666666
- type: map_at_3
value: 27.84425
- type: map_at_5
value: 29.233333333333334
- type: mrr_at_1
value: 26.75733333333333
- type: mrr_at_10
value: 34.24425
- type: mrr_at_100
value: 35.11375
- type: mrr_at_1000
value: 35.184333333333335
- type: mrr_at_3
value: 32.01225
- type: mrr_at_5
value: 33.31225
- type: ndcg_at_1
value: 26.75733333333333
- type: ndcg_at_10
value: 35.072583333333334
- type: ndcg_at_100
value: 40.13358333333334
- type: ndcg_at_1000
value: 42.81825
- type: ndcg_at_3
value: 30.79275000000001
- type: ndcg_at_5
value: 32.822
- type: precision_at_1
value: 26.75733333333333
- type: precision_at_10
value: 6.128083333333334
- type: precision_at_100
value: 1.019
- type: precision_at_1000
value: 0.14391666666666664
- type: precision_at_3
value: 14.129916666666665
- type: precision_at_5
value: 10.087416666666668
- type: recall_at_1
value: 22.528166666666667
- type: recall_at_10
value: 45.38341666666667
- type: recall_at_100
value: 67.81791666666668
- type: recall_at_1000
value: 86.71716666666666
- type: recall_at_3
value: 33.38741666666667
- type: recall_at_5
value: 38.62041666666667
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 21.975
- type: map_at_10
value: 28.144999999999996
- type: map_at_100
value: 28.994999999999997
- type: map_at_1000
value: 29.086000000000002
- type: map_at_3
value: 25.968999999999998
- type: map_at_5
value: 27.321
- type: mrr_at_1
value: 25
- type: mrr_at_10
value: 30.822
- type: mrr_at_100
value: 31.647
- type: mrr_at_1000
value: 31.712
- type: mrr_at_3
value: 28.860000000000003
- type: mrr_at_5
value: 30.041
- type: ndcg_at_1
value: 25
- type: ndcg_at_10
value: 31.929999999999996
- type: ndcg_at_100
value: 36.258
- type: ndcg_at_1000
value: 38.682
- type: ndcg_at_3
value: 27.972
- type: ndcg_at_5
value: 30.089
- type: precision_at_1
value: 25
- type: precision_at_10
value: 4.923
- type: precision_at_100
value: 0.767
- type: precision_at_1000
value: 0.106
- type: precision_at_3
value: 11.860999999999999
- type: precision_at_5
value: 8.466
- type: recall_at_1
value: 21.975
- type: recall_at_10
value: 41.102
- type: recall_at_100
value: 60.866
- type: recall_at_1000
value: 78.781
- type: recall_at_3
value: 30.268
- type: recall_at_5
value: 35.552
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 15.845999999999998
- type: map_at_10
value: 21.861
- type: map_at_100
value: 22.798
- type: map_at_1000
value: 22.925
- type: map_at_3
value: 19.922
- type: map_at_5
value: 21.054000000000002
- type: mrr_at_1
value: 19.098000000000003
- type: mrr_at_10
value: 25.397
- type: mrr_at_100
value: 26.246000000000002
- type: mrr_at_1000
value: 26.33
- type: mrr_at_3
value: 23.469
- type: mrr_at_5
value: 24.646
- type: ndcg_at_1
value: 19.098000000000003
- type: ndcg_at_10
value: 25.807999999999996
- type: ndcg_at_100
value: 30.445
- type: ndcg_at_1000
value: 33.666000000000004
- type: ndcg_at_3
value: 22.292
- type: ndcg_at_5
value: 24.075
- type: precision_at_1
value: 19.098000000000003
- type: precision_at_10
value: 4.58
- type: precision_at_100
value: 0.8099999999999999
- type: precision_at_1000
value: 0.126
- type: precision_at_3
value: 10.346
- type: precision_at_5
value: 7.542999999999999
- type: recall_at_1
value: 15.845999999999998
- type: recall_at_10
value: 34.172999999999995
- type: recall_at_100
value: 55.24099999999999
- type: recall_at_1000
value: 78.644
- type: recall_at_3
value: 24.401
- type: recall_at_5
value: 28.938000000000002
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.974
- type: map_at_10
value: 30.108
- type: map_at_100
value: 31.208000000000002
- type: map_at_1000
value: 31.330999999999996
- type: map_at_3
value: 27.889999999999997
- type: map_at_5
value: 29.023
- type: mrr_at_1
value: 26.493
- type: mrr_at_10
value: 33.726
- type: mrr_at_100
value: 34.622
- type: mrr_at_1000
value: 34.703
- type: mrr_at_3
value: 31.575999999999997
- type: mrr_at_5
value: 32.690999999999995
- type: ndcg_at_1
value: 26.493
- type: ndcg_at_10
value: 34.664
- type: ndcg_at_100
value: 39.725
- type: ndcg_at_1000
value: 42.648
- type: ndcg_at_3
value: 30.447999999999997
- type: ndcg_at_5
value: 32.145
- type: precision_at_1
value: 26.493
- type: precision_at_10
value: 5.7090000000000005
- type: precision_at_100
value: 0.9199999999999999
- type: precision_at_1000
value: 0.129
- type: precision_at_3
value: 13.464
- type: precision_at_5
value: 9.384
- type: recall_at_1
value: 22.974
- type: recall_at_10
value: 45.097
- type: recall_at_100
value: 66.908
- type: recall_at_1000
value: 87.495
- type: recall_at_3
value: 33.338
- type: recall_at_5
value: 37.499
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.408
- type: map_at_10
value: 29.580000000000002
- type: map_at_100
value: 31.145
- type: map_at_1000
value: 31.369000000000003
- type: map_at_3
value: 27.634999999999998
- type: map_at_5
value: 28.766000000000002
- type: mrr_at_1
value: 27.272999999999996
- type: mrr_at_10
value: 33.93
- type: mrr_at_100
value: 34.963
- type: mrr_at_1000
value: 35.031
- type: mrr_at_3
value: 32.016
- type: mrr_at_5
value: 33.221000000000004
- type: ndcg_at_1
value: 27.272999999999996
- type: ndcg_at_10
value: 33.993
- type: ndcg_at_100
value: 40.333999999999996
- type: ndcg_at_1000
value: 43.361
- type: ndcg_at_3
value: 30.918
- type: ndcg_at_5
value: 32.552
- type: precision_at_1
value: 27.272999999999996
- type: precision_at_10
value: 6.285
- type: precision_at_100
value: 1.389
- type: precision_at_1000
value: 0.232
- type: precision_at_3
value: 14.427000000000001
- type: precision_at_5
value: 10.356
- type: recall_at_1
value: 22.408
- type: recall_at_10
value: 41.318
- type: recall_at_100
value: 70.539
- type: recall_at_1000
value: 90.197
- type: recall_at_3
value: 32.513
- type: recall_at_5
value: 37
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 17.258000000000003
- type: map_at_10
value: 24.294
- type: map_at_100
value: 25.305
- type: map_at_1000
value: 25.419999999999998
- type: map_at_3
value: 22.326999999999998
- type: map_at_5
value: 23.31
- type: mrr_at_1
value: 18.484
- type: mrr_at_10
value: 25.863999999999997
- type: mrr_at_100
value: 26.766000000000002
- type: mrr_at_1000
value: 26.855
- type: mrr_at_3
value: 23.968
- type: mrr_at_5
value: 24.911
- type: ndcg_at_1
value: 18.484
- type: ndcg_at_10
value: 28.433000000000003
- type: ndcg_at_100
value: 33.405
- type: ndcg_at_1000
value: 36.375
- type: ndcg_at_3
value: 24.455
- type: ndcg_at_5
value: 26.031
- type: precision_at_1
value: 18.484
- type: precision_at_10
value: 4.603
- type: precision_at_100
value: 0.773
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 10.659
- type: precision_at_5
value: 7.505000000000001
- type: recall_at_1
value: 17.258000000000003
- type: recall_at_10
value: 39.589999999999996
- type: recall_at_100
value: 62.592000000000006
- type: recall_at_1000
value: 84.917
- type: recall_at_3
value: 28.706
- type: recall_at_5
value: 32.224000000000004
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 10.578999999999999
- type: map_at_10
value: 17.642
- type: map_at_100
value: 19.451
- type: map_at_1000
value: 19.647000000000002
- type: map_at_3
value: 14.618
- type: map_at_5
value: 16.145
- type: mrr_at_1
value: 23.322000000000003
- type: mrr_at_10
value: 34.204
- type: mrr_at_100
value: 35.185
- type: mrr_at_1000
value: 35.235
- type: mrr_at_3
value: 30.847
- type: mrr_at_5
value: 32.824
- type: ndcg_at_1
value: 23.322000000000003
- type: ndcg_at_10
value: 25.352999999999998
- type: ndcg_at_100
value: 32.574
- type: ndcg_at_1000
value: 36.073
- type: ndcg_at_3
value: 20.318
- type: ndcg_at_5
value: 22.111
- type: precision_at_1
value: 23.322000000000003
- type: precision_at_10
value: 8.02
- type: precision_at_100
value: 1.5730000000000002
- type: precision_at_1000
value: 0.22200000000000003
- type: precision_at_3
value: 15.049000000000001
- type: precision_at_5
value: 11.87
- type: recall_at_1
value: 10.578999999999999
- type: recall_at_10
value: 30.964999999999996
- type: recall_at_100
value: 55.986000000000004
- type: recall_at_1000
value: 75.565
- type: recall_at_3
value: 18.686
- type: recall_at_5
value: 23.629
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 7.327
- type: map_at_10
value: 14.904
- type: map_at_100
value: 20.29
- type: map_at_1000
value: 21.42
- type: map_at_3
value: 10.911
- type: map_at_5
value: 12.791
- type: mrr_at_1
value: 57.25
- type: mrr_at_10
value: 66.62700000000001
- type: mrr_at_100
value: 67.035
- type: mrr_at_1000
value: 67.052
- type: mrr_at_3
value: 64.833
- type: mrr_at_5
value: 65.908
- type: ndcg_at_1
value: 43.75
- type: ndcg_at_10
value: 32.246
- type: ndcg_at_100
value: 35.774
- type: ndcg_at_1000
value: 42.872
- type: ndcg_at_3
value: 36.64
- type: ndcg_at_5
value: 34.487
- type: precision_at_1
value: 57.25
- type: precision_at_10
value: 25.924999999999997
- type: precision_at_100
value: 7.670000000000001
- type: precision_at_1000
value: 1.599
- type: precision_at_3
value: 41.167
- type: precision_at_5
value: 34.65
- type: recall_at_1
value: 7.327
- type: recall_at_10
value: 19.625
- type: recall_at_100
value: 41.601
- type: recall_at_1000
value: 65.117
- type: recall_at_3
value: 12.308
- type: recall_at_5
value: 15.437999999999999
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 44.53
- type: f1
value: 39.39884255816736
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 58.913000000000004
- type: map_at_10
value: 69.592
- type: map_at_100
value: 69.95599999999999
- type: map_at_1000
value: 69.973
- type: map_at_3
value: 67.716
- type: map_at_5
value: 68.899
- type: mrr_at_1
value: 63.561
- type: mrr_at_10
value: 74.2
- type: mrr_at_100
value: 74.468
- type: mrr_at_1000
value: 74.47500000000001
- type: mrr_at_3
value: 72.442
- type: mrr_at_5
value: 73.58
- type: ndcg_at_1
value: 63.561
- type: ndcg_at_10
value: 74.988
- type: ndcg_at_100
value: 76.52799999999999
- type: ndcg_at_1000
value: 76.88000000000001
- type: ndcg_at_3
value: 71.455
- type: ndcg_at_5
value: 73.42699999999999
- type: precision_at_1
value: 63.561
- type: precision_at_10
value: 9.547
- type: precision_at_100
value: 1.044
- type: precision_at_1000
value: 0.109
- type: precision_at_3
value: 28.143
- type: precision_at_5
value: 18.008
- type: recall_at_1
value: 58.913000000000004
- type: recall_at_10
value: 87.18
- type: recall_at_100
value: 93.852
- type: recall_at_1000
value: 96.256
- type: recall_at_3
value: 77.55199999999999
- type: recall_at_5
value: 82.42399999999999
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 11.761000000000001
- type: map_at_10
value: 19.564999999999998
- type: map_at_100
value: 21.099
- type: map_at_1000
value: 21.288999999999998
- type: map_at_3
value: 16.683999999999997
- type: map_at_5
value: 18.307000000000002
- type: mrr_at_1
value: 23.302
- type: mrr_at_10
value: 30.979
- type: mrr_at_100
value: 32.121
- type: mrr_at_1000
value: 32.186
- type: mrr_at_3
value: 28.549000000000003
- type: mrr_at_5
value: 30.038999999999998
- type: ndcg_at_1
value: 23.302
- type: ndcg_at_10
value: 25.592
- type: ndcg_at_100
value: 32.416
- type: ndcg_at_1000
value: 36.277
- type: ndcg_at_3
value: 22.151
- type: ndcg_at_5
value: 23.483999999999998
- type: precision_at_1
value: 23.302
- type: precision_at_10
value: 7.377000000000001
- type: precision_at_100
value: 1.415
- type: precision_at_1000
value: 0.212
- type: precision_at_3
value: 14.712
- type: precision_at_5
value: 11.358
- type: recall_at_1
value: 11.761000000000001
- type: recall_at_10
value: 31.696
- type: recall_at_100
value: 58.01500000000001
- type: recall_at_1000
value: 81.572
- type: recall_at_3
value: 20.742
- type: recall_at_5
value: 25.707
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.275
- type: map_at_10
value: 44.712
- type: map_at_100
value: 45.621
- type: map_at_1000
value: 45.698
- type: map_at_3
value: 42.016999999999996
- type: map_at_5
value: 43.659
- type: mrr_at_1
value: 64.551
- type: mrr_at_10
value: 71.58099999999999
- type: mrr_at_100
value: 71.952
- type: mrr_at_1000
value: 71.96900000000001
- type: mrr_at_3
value: 70.236
- type: mrr_at_5
value: 71.051
- type: ndcg_at_1
value: 64.551
- type: ndcg_at_10
value: 53.913999999999994
- type: ndcg_at_100
value: 57.421
- type: ndcg_at_1000
value: 59.06
- type: ndcg_at_3
value: 49.716
- type: ndcg_at_5
value: 51.971999999999994
- type: precision_at_1
value: 64.551
- type: precision_at_10
value: 11.110000000000001
- type: precision_at_100
value: 1.388
- type: precision_at_1000
value: 0.161
- type: precision_at_3
value: 30.822
- type: precision_at_5
value: 20.273
- type: recall_at_1
value: 32.275
- type: recall_at_10
value: 55.55
- type: recall_at_100
value: 69.38600000000001
- type: recall_at_1000
value: 80.35799999999999
- type: recall_at_3
value: 46.232
- type: recall_at_5
value: 50.682
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 76.4604
- type: ap
value: 70.40498168422701
- type: f1
value: 76.38572688476046
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 15.065999999999999
- type: map_at_10
value: 25.058000000000003
- type: map_at_100
value: 26.268
- type: map_at_1000
value: 26.344
- type: map_at_3
value: 21.626
- type: map_at_5
value: 23.513
- type: mrr_at_1
value: 15.501000000000001
- type: mrr_at_10
value: 25.548
- type: mrr_at_100
value: 26.723000000000003
- type: mrr_at_1000
value: 26.793
- type: mrr_at_3
value: 22.142
- type: mrr_at_5
value: 24.024
- type: ndcg_at_1
value: 15.501000000000001
- type: ndcg_at_10
value: 31.008000000000003
- type: ndcg_at_100
value: 37.08
- type: ndcg_at_1000
value: 39.102
- type: ndcg_at_3
value: 23.921999999999997
- type: ndcg_at_5
value: 27.307
- type: precision_at_1
value: 15.501000000000001
- type: precision_at_10
value: 5.155
- type: precision_at_100
value: 0.822
- type: precision_at_1000
value: 0.099
- type: precision_at_3
value: 10.363
- type: precision_at_5
value: 7.917000000000001
- type: recall_at_1
value: 15.065999999999999
- type: recall_at_10
value: 49.507
- type: recall_at_100
value: 78.118
- type: recall_at_1000
value: 93.881
- type: recall_at_3
value: 30.075000000000003
- type: recall_at_5
value: 38.222
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 90.6703146374829
- type: f1
value: 90.1258004293966
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 68.29229366165072
- type: f1
value: 50.016194478997875
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.57767316745124
- type: f1
value: 67.16194062146954
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.92064559515804
- type: f1
value: 73.6680729569968
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 31.56335607367883
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 28.131807833734268
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 31.07390328719844
- type: mrr
value: 32.117370992867905
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.274
- type: map_at_10
value: 11.489
- type: map_at_100
value: 14.518
- type: map_at_1000
value: 15.914
- type: map_at_3
value: 8.399
- type: map_at_5
value: 9.889000000000001
- type: mrr_at_1
value: 42.724000000000004
- type: mrr_at_10
value: 51.486
- type: mrr_at_100
value: 51.941
- type: mrr_at_1000
value: 51.99
- type: mrr_at_3
value: 49.278
- type: mrr_at_5
value: 50.485
- type: ndcg_at_1
value: 39.938
- type: ndcg_at_10
value: 31.862000000000002
- type: ndcg_at_100
value: 29.235
- type: ndcg_at_1000
value: 37.802
- type: ndcg_at_3
value: 35.754999999999995
- type: ndcg_at_5
value: 34.447
- type: precision_at_1
value: 42.105
- type: precision_at_10
value: 23.901
- type: precision_at_100
value: 7.715
- type: precision_at_1000
value: 2.045
- type: precision_at_3
value: 33.437
- type: precision_at_5
value: 29.782999999999998
- type: recall_at_1
value: 5.274
- type: recall_at_10
value: 15.351
- type: recall_at_100
value: 29.791
- type: recall_at_1000
value: 60.722
- type: recall_at_3
value: 9.411
- type: recall_at_5
value: 12.171999999999999
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 16.099
- type: map_at_10
value: 27.913
- type: map_at_100
value: 29.281000000000002
- type: map_at_1000
value: 29.343999999999998
- type: map_at_3
value: 23.791
- type: map_at_5
value: 26.049
- type: mrr_at_1
value: 18.337
- type: mrr_at_10
value: 29.953999999999997
- type: mrr_at_100
value: 31.080999999999996
- type: mrr_at_1000
value: 31.130000000000003
- type: mrr_at_3
value: 26.168000000000003
- type: mrr_at_5
value: 28.277
- type: ndcg_at_1
value: 18.308
- type: ndcg_at_10
value: 34.938
- type: ndcg_at_100
value: 41.125
- type: ndcg_at_1000
value: 42.708
- type: ndcg_at_3
value: 26.805
- type: ndcg_at_5
value: 30.686999999999998
- type: precision_at_1
value: 18.308
- type: precision_at_10
value: 6.476999999999999
- type: precision_at_100
value: 0.9939999999999999
- type: precision_at_1000
value: 0.11399999999999999
- type: precision_at_3
value: 12.784999999999998
- type: precision_at_5
value: 9.878
- type: recall_at_1
value: 16.099
- type: recall_at_10
value: 54.63
- type: recall_at_100
value: 82.24900000000001
- type: recall_at_1000
value: 94.242
- type: recall_at_3
value: 33.174
- type: recall_at_5
value: 42.164
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 67.947
- type: map_at_10
value: 81.499
- type: map_at_100
value: 82.17
- type: map_at_1000
value: 82.194
- type: map_at_3
value: 78.567
- type: map_at_5
value: 80.34400000000001
- type: mrr_at_1
value: 78.18
- type: mrr_at_10
value: 85.05
- type: mrr_at_100
value: 85.179
- type: mrr_at_1000
value: 85.181
- type: mrr_at_3
value: 83.91
- type: mrr_at_5
value: 84.638
- type: ndcg_at_1
value: 78.2
- type: ndcg_at_10
value: 85.715
- type: ndcg_at_100
value: 87.2
- type: ndcg_at_1000
value: 87.39
- type: ndcg_at_3
value: 82.572
- type: ndcg_at_5
value: 84.176
- type: precision_at_1
value: 78.2
- type: precision_at_10
value: 12.973
- type: precision_at_100
value: 1.5010000000000001
- type: precision_at_1000
value: 0.156
- type: precision_at_3
value: 35.949999999999996
- type: precision_at_5
value: 23.62
- type: recall_at_1
value: 67.947
- type: recall_at_10
value: 93.804
- type: recall_at_100
value: 98.971
- type: recall_at_1000
value: 99.91600000000001
- type: recall_at_3
value: 84.75399999999999
- type: recall_at_5
value: 89.32
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 45.457201684255104
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 55.162226937477875
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.173
- type: map_at_10
value: 10.463000000000001
- type: map_at_100
value: 12.278
- type: map_at_1000
value: 12.572
- type: map_at_3
value: 7.528
- type: map_at_5
value: 8.863
- type: mrr_at_1
value: 20.599999999999998
- type: mrr_at_10
value: 30.422
- type: mrr_at_100
value: 31.6
- type: mrr_at_1000
value: 31.663000000000004
- type: mrr_at_3
value: 27.400000000000002
- type: mrr_at_5
value: 29.065
- type: ndcg_at_1
value: 20.599999999999998
- type: ndcg_at_10
value: 17.687
- type: ndcg_at_100
value: 25.172
- type: ndcg_at_1000
value: 30.617
- type: ndcg_at_3
value: 16.81
- type: ndcg_at_5
value: 14.499
- type: precision_at_1
value: 20.599999999999998
- type: precision_at_10
value: 9.17
- type: precision_at_100
value: 2.004
- type: precision_at_1000
value: 0.332
- type: precision_at_3
value: 15.6
- type: precision_at_5
value: 12.58
- type: recall_at_1
value: 4.173
- type: recall_at_10
value: 18.575
- type: recall_at_100
value: 40.692
- type: recall_at_1000
value: 67.467
- type: recall_at_3
value: 9.488000000000001
- type: recall_at_5
value: 12.738
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 81.12603499315416
- type: cos_sim_spearman
value: 73.62060290948378
- type: euclidean_pearson
value: 78.14083565781135
- type: euclidean_spearman
value: 73.16840437541543
- type: manhattan_pearson
value: 77.92017261109734
- type: manhattan_spearman
value: 72.8805059949965
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 79.75955377133172
- type: cos_sim_spearman
value: 71.8872633964069
- type: euclidean_pearson
value: 76.31922068538256
- type: euclidean_spearman
value: 70.86449661855376
- type: manhattan_pearson
value: 76.47852229730407
- type: manhattan_spearman
value: 70.99367421984789
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 78.80762722908158
- type: cos_sim_spearman
value: 79.84588978756372
- type: euclidean_pearson
value: 79.8216849781164
- type: euclidean_spearman
value: 80.22647061695481
- type: manhattan_pearson
value: 79.56604194112572
- type: manhattan_spearman
value: 79.96495189862462
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 80.1012718092742
- type: cos_sim_spearman
value: 76.86011381793661
- type: euclidean_pearson
value: 79.94426039862019
- type: euclidean_spearman
value: 77.36751135465131
- type: manhattan_pearson
value: 79.87959373304288
- type: manhattan_spearman
value: 77.37717129004746
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 83.90618420346104
- type: cos_sim_spearman
value: 84.77290791243722
- type: euclidean_pearson
value: 84.64732258073293
- type: euclidean_spearman
value: 85.21053649543357
- type: manhattan_pearson
value: 84.61616883522647
- type: manhattan_spearman
value: 85.19803126766931
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 80.52192114059063
- type: cos_sim_spearman
value: 81.9103244827937
- type: euclidean_pearson
value: 80.99375176138985
- type: euclidean_spearman
value: 81.540250641079
- type: manhattan_pearson
value: 80.84979573396426
- type: manhattan_spearman
value: 81.3742591621492
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 85.82166001234197
- type: cos_sim_spearman
value: 86.81857495659123
- type: euclidean_pearson
value: 85.72798403202849
- type: euclidean_spearman
value: 85.70482438950965
- type: manhattan_pearson
value: 85.51579093130357
- type: manhattan_spearman
value: 85.41233705379751
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 64.48071151079803
- type: cos_sim_spearman
value: 65.37838108084044
- type: euclidean_pearson
value: 64.67378947096257
- type: euclidean_spearman
value: 65.39187147219869
- type: manhattan_pearson
value: 65.35487466133208
- type: manhattan_spearman
value: 65.51328499442272
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 82.64702367823314
- type: cos_sim_spearman
value: 82.49732953181818
- type: euclidean_pearson
value: 83.05996062475664
- type: euclidean_spearman
value: 82.28159546751176
- type: manhattan_pearson
value: 82.98305503664952
- type: manhattan_spearman
value: 82.18405771943928
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 78.5744649318696
- type: mrr
value: 93.35386291268645
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 52.093999999999994
- type: map_at_10
value: 61.646
- type: map_at_100
value: 62.197
- type: map_at_1000
value: 62.22800000000001
- type: map_at_3
value: 58.411
- type: map_at_5
value: 60.585
- type: mrr_at_1
value: 55.00000000000001
- type: mrr_at_10
value: 62.690999999999995
- type: mrr_at_100
value: 63.139
- type: mrr_at_1000
value: 63.166999999999994
- type: mrr_at_3
value: 60.111000000000004
- type: mrr_at_5
value: 61.778
- type: ndcg_at_1
value: 55.00000000000001
- type: ndcg_at_10
value: 66.271
- type: ndcg_at_100
value: 68.879
- type: ndcg_at_1000
value: 69.722
- type: ndcg_at_3
value: 60.672000000000004
- type: ndcg_at_5
value: 63.929
- type: precision_at_1
value: 55.00000000000001
- type: precision_at_10
value: 9
- type: precision_at_100
value: 1.043
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 23.555999999999997
- type: precision_at_5
value: 16.2
- type: recall_at_1
value: 52.093999999999994
- type: recall_at_10
value: 79.567
- type: recall_at_100
value: 91.60000000000001
- type: recall_at_1000
value: 98.333
- type: recall_at_3
value: 64.633
- type: recall_at_5
value: 72.68299999999999
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.83267326732673
- type: cos_sim_ap
value: 95.77995366495178
- type: cos_sim_f1
value: 91.51180311401306
- type: cos_sim_precision
value: 91.92734611503532
- type: cos_sim_recall
value: 91.10000000000001
- type: dot_accuracy
value: 99.63366336633663
- type: dot_ap
value: 88.53996286967461
- type: dot_f1
value: 81.06537530266343
- type: dot_precision
value: 78.59154929577464
- type: dot_recall
value: 83.7
- type: euclidean_accuracy
value: 99.82376237623762
- type: euclidean_ap
value: 95.53192209281187
- type: euclidean_f1
value: 91.19683481701286
- type: euclidean_precision
value: 90.21526418786692
- type: euclidean_recall
value: 92.2
- type: manhattan_accuracy
value: 99.82376237623762
- type: manhattan_ap
value: 95.55642082191741
- type: manhattan_f1
value: 91.16186693147964
- type: manhattan_precision
value: 90.53254437869822
- type: manhattan_recall
value: 91.8
- type: max_accuracy
value: 99.83267326732673
- type: max_ap
value: 95.77995366495178
- type: max_f1
value: 91.51180311401306
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 54.508462134213474
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 34.06549765184959
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 49.43129549466616
- type: mrr
value: 50.20613169510227
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.069516173193044
- type: cos_sim_spearman
value: 29.872498354017353
- type: dot_pearson
value: 28.80761257516063
- type: dot_spearman
value: 28.397422678527708
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.169
- type: map_at_10
value: 1.208
- type: map_at_100
value: 5.925
- type: map_at_1000
value: 14.427000000000001
- type: map_at_3
value: 0.457
- type: map_at_5
value: 0.716
- type: mrr_at_1
value: 64
- type: mrr_at_10
value: 74.075
- type: mrr_at_100
value: 74.303
- type: mrr_at_1000
value: 74.303
- type: mrr_at_3
value: 71
- type: mrr_at_5
value: 72.89999999999999
- type: ndcg_at_1
value: 57.99999999999999
- type: ndcg_at_10
value: 50.376
- type: ndcg_at_100
value: 38.582
- type: ndcg_at_1000
value: 35.663
- type: ndcg_at_3
value: 55.592
- type: ndcg_at_5
value: 53.647999999999996
- type: precision_at_1
value: 64
- type: precision_at_10
value: 53.2
- type: precision_at_100
value: 39.6
- type: precision_at_1000
value: 16.218
- type: precision_at_3
value: 59.333000000000006
- type: precision_at_5
value: 57.599999999999994
- type: recall_at_1
value: 0.169
- type: recall_at_10
value: 1.423
- type: recall_at_100
value: 9.049999999999999
- type: recall_at_1000
value: 34.056999999999995
- type: recall_at_3
value: 0.48700000000000004
- type: recall_at_5
value: 0.792
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 1.319
- type: map_at_10
value: 7.112
- type: map_at_100
value: 12.588
- type: map_at_1000
value: 14.056
- type: map_at_3
value: 2.8049999999999997
- type: map_at_5
value: 4.68
- type: mrr_at_1
value: 18.367
- type: mrr_at_10
value: 33.94
- type: mrr_at_100
value: 35.193000000000005
- type: mrr_at_1000
value: 35.193000000000005
- type: mrr_at_3
value: 29.932
- type: mrr_at_5
value: 32.279
- type: ndcg_at_1
value: 15.306000000000001
- type: ndcg_at_10
value: 18.096
- type: ndcg_at_100
value: 30.512
- type: ndcg_at_1000
value: 42.148
- type: ndcg_at_3
value: 17.034
- type: ndcg_at_5
value: 18.509
- type: precision_at_1
value: 18.367
- type: precision_at_10
value: 18.776
- type: precision_at_100
value: 7.02
- type: precision_at_1000
value: 1.467
- type: precision_at_3
value: 19.048000000000002
- type: precision_at_5
value: 22.041
- type: recall_at_1
value: 1.319
- type: recall_at_10
value: 13.748
- type: recall_at_100
value: 43.972
- type: recall_at_1000
value: 79.557
- type: recall_at_3
value: 4.042
- type: recall_at_5
value: 7.742
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 70.2282
- type: ap
value: 13.995763859570426
- type: f1
value: 54.08126256731344
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 57.64006791171477
- type: f1
value: 57.95841320748957
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 40.19267841788564
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 83.96614412588663
- type: cos_sim_ap
value: 67.75985678572738
- type: cos_sim_f1
value: 64.04661542276222
- type: cos_sim_precision
value: 60.406922357343305
- type: cos_sim_recall
value: 68.15303430079156
- type: dot_accuracy
value: 79.5732252488526
- type: dot_ap
value: 51.30562107572645
- type: dot_f1
value: 53.120759837177744
- type: dot_precision
value: 46.478037198258804
- type: dot_recall
value: 61.97889182058047
- type: euclidean_accuracy
value: 84.00786791440663
- type: euclidean_ap
value: 67.58930214486998
- type: euclidean_f1
value: 64.424821579775
- type: euclidean_precision
value: 59.4817958454322
- type: euclidean_recall
value: 70.26385224274406
- type: manhattan_accuracy
value: 83.87673600762949
- type: manhattan_ap
value: 67.4250981523309
- type: manhattan_f1
value: 64.10286658015808
- type: manhattan_precision
value: 57.96885001066781
- type: manhattan_recall
value: 71.68865435356201
- type: max_accuracy
value: 84.00786791440663
- type: max_ap
value: 67.75985678572738
- type: max_f1
value: 64.424821579775
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.41347459929368
- type: cos_sim_ap
value: 84.89261930113058
- type: cos_sim_f1
value: 77.13677607258877
- type: cos_sim_precision
value: 74.88581164358733
- type: cos_sim_recall
value: 79.52725592854944
- type: dot_accuracy
value: 86.32359219156285
- type: dot_ap
value: 79.29794992131094
- type: dot_f1
value: 72.84356337679777
- type: dot_precision
value: 67.31761478675462
- type: dot_recall
value: 79.35786880197105
- type: euclidean_accuracy
value: 88.33585593976791
- type: euclidean_ap
value: 84.73257641312746
- type: euclidean_f1
value: 76.83529582788195
- type: euclidean_precision
value: 72.76294052863436
- type: euclidean_recall
value: 81.3905143209116
- type: manhattan_accuracy
value: 88.3086894089339
- type: manhattan_ap
value: 84.66304891729399
- type: manhattan_f1
value: 76.8181650632165
- type: manhattan_precision
value: 73.6864436744219
- type: manhattan_recall
value: 80.22790267939637
- type: max_accuracy
value: 88.41347459929368
- type: max_ap
value: 84.89261930113058
- type: max_f1
value: 77.13677607258877
bge-micro-v2
This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Distilled in a 2-step training process (bge-micro was step 1) from BAAI/bge-small-en-v1.5
.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)