TasmiaAzmi's picture
update model card README.md
5534b6c
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: masked-sentence-generation-t5-base
    results: []

masked-sentence-generation-t5-base

This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7392

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
2.9984 0.05 80 2.7041
2.8752 0.1 160 2.7021
2.9314 0.15 240 2.6966
2.8541 0.2 320 2.6968
2.8674 0.25 400 2.6900
2.8706 0.3 480 2.6886
2.7718 0.34 560 2.6908
2.8503 0.39 640 2.6877
2.8195 0.44 720 2.6902
2.8569 0.49 800 2.6893
2.8372 0.54 880 2.6859
2.8915 0.59 960 2.6898
2.9687 0.64 1040 2.6909
2.832 0.69 1120 2.6841
2.8425 0.74 1200 2.6842
2.8114 0.79 1280 2.6766
2.8101 0.84 1360 2.6783
2.8837 0.89 1440 2.6781
2.894 0.94 1520 2.6754
2.9183 0.99 1600 2.6762
2.6916 1.03 1680 2.6889
2.5812 1.08 1760 2.6896
2.5522 1.13 1840 2.6943
2.5368 1.18 1920 2.6928
2.5987 1.23 2000 2.6927
2.5625 1.28 2080 2.6899
2.4946 1.33 2160 2.6942
2.5902 1.38 2240 2.6900
2.5415 1.43 2320 2.6897
2.5767 1.48 2400 2.6858
2.6262 1.53 2480 2.6825
2.6066 1.58 2560 2.6818
2.5387 1.63 2640 2.6840
2.5795 1.67 2720 2.6828
2.5521 1.72 2800 2.6871
2.5477 1.77 2880 2.6836
2.587 1.82 2960 2.6824
2.529 1.87 3040 2.6871
2.6221 1.92 3120 2.6838
2.6353 1.97 3200 2.6803
2.5419 2.02 3280 2.6879
2.4521 2.07 3360 2.7027
2.3415 2.12 3440 2.7105
2.3483 2.17 3520 2.7140
2.3493 2.22 3600 2.7144
2.3967 2.27 3680 2.7134
2.3544 2.32 3760 2.7122
2.3192 2.36 3840 2.7175
2.3381 2.41 3920 2.7166
2.3667 2.46 4000 2.7165
2.3997 2.51 4080 2.7106
2.3178 2.56 4160 2.7154
2.4036 2.61 4240 2.7144
2.3797 2.66 4320 2.7129
2.3354 2.71 4400 2.7136
2.4109 2.76 4480 2.7118
2.387 2.81 4560 2.7097
2.3934 2.86 4640 2.7103
2.3956 2.91 4720 2.7103
2.4086 2.96 4800 2.7111
2.4083 3.0 4880 2.7110
2.3121 3.05 4960 2.7230
2.263 3.1 5040 2.7252
2.2722 3.15 5120 2.7296
2.2053 3.2 5200 2.7309
2.1969 3.25 5280 2.7363
2.2684 3.3 5360 2.7396
2.2789 3.35 5440 2.7376
2.2227 3.4 5520 2.7384
2.2886 3.45 5600 2.7390
2.2182 3.5 5680 2.7376
2.2738 3.55 5760 2.7394
2.1687 3.6 5840 2.7386
2.2548 3.65 5920 2.7371
2.2391 3.69 6000 2.7372
2.2031 3.74 6080 2.7391
2.1885 3.79 6160 2.7400
2.216 3.84 6240 2.7406
2.272 3.89 6320 2.7401
2.3455 3.94 6400 2.7395
2.2889 3.99 6480 2.7392

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0
  • Datasets 2.12.0
  • Tokenizers 0.11.0