metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: facebook/wav2vec2-large-xlsr-53
model-index:
- name: results
results: []
results
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1638
- Accuracy: 0.975
Model description
The model Urdu audio and classify in following categories
- Angry
- Happy
- Neutral
- Sad
Training and evaluation data
The dataset is available at https://www.kaggle.com/datasets/kingabzpro/urdu-emotion-dataset
Training procedure
Training code is available at https://www.kaggle.com/code/chtalhaanwar/urdu-emotions-hf
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3838 | 1.0 | 10 | 1.3907 | 0.225 |
1.3732 | 2.0 | 20 | 1.3872 | 0.2125 |
1.3354 | 3.0 | 30 | 1.3116 | 0.6625 |
1.2689 | 4.0 | 40 | 1.1820 | 0.6375 |
1.1179 | 5.0 | 50 | 1.0075 | 0.7 |
0.9962 | 6.0 | 60 | 0.8707 | 0.7125 |
0.8842 | 7.0 | 70 | 0.7485 | 0.7625 |
0.786 | 8.0 | 80 | 0.6326 | 0.8 |
0.6757 | 9.0 | 90 | 0.5995 | 0.8 |
0.6104 | 10.0 | 100 | 0.4835 | 0.825 |
0.5821 | 11.0 | 110 | 0.3886 | 0.9 |
0.4721 | 12.0 | 120 | 0.3935 | 0.8625 |
0.3976 | 13.0 | 130 | 0.3020 | 0.925 |
0.4483 | 14.0 | 140 | 0.3171 | 0.9 |
0.2665 | 15.0 | 150 | 0.3016 | 0.9125 |
0.2119 | 16.0 | 160 | 0.2722 | 0.925 |
0.3376 | 17.0 | 170 | 0.3163 | 0.8875 |
0.1518 | 18.0 | 180 | 0.2681 | 0.9125 |
0.1559 | 19.0 | 190 | 0.3074 | 0.925 |
0.1031 | 20.0 | 200 | 0.3526 | 0.8875 |
0.1557 | 21.0 | 210 | 0.2254 | 0.9375 |
0.0846 | 22.0 | 220 | 0.2410 | 0.9375 |
0.0733 | 23.0 | 230 | 0.2369 | 0.925 |
0.0964 | 24.0 | 240 | 0.2273 | 0.9375 |
0.0574 | 25.0 | 250 | 0.2066 | 0.95 |
0.1113 | 26.0 | 260 | 0.2941 | 0.9125 |
0.1313 | 27.0 | 270 | 0.2715 | 0.925 |
0.0851 | 28.0 | 280 | 0.1725 | 0.9625 |
0.0402 | 29.0 | 290 | 0.2221 | 0.95 |
0.1075 | 30.0 | 300 | 0.2199 | 0.9625 |
0.0418 | 31.0 | 310 | 0.1699 | 0.95 |
0.1869 | 32.0 | 320 | 0.2287 | 0.9625 |
0.0637 | 33.0 | 330 | 0.3230 | 0.9125 |
0.0483 | 34.0 | 340 | 0.1602 | 0.975 |
0.0891 | 35.0 | 350 | 0.1615 | 0.975 |
0.0359 | 36.0 | 360 | 0.1571 | 0.975 |
0.1006 | 37.0 | 370 | 0.1809 | 0.9625 |
0.0417 | 38.0 | 380 | 0.1923 | 0.9625 |
0.0346 | 39.0 | 390 | 0.2035 | 0.9625 |
0.0417 | 40.0 | 400 | 0.1737 | 0.9625 |
0.0396 | 41.0 | 410 | 0.1833 | 0.9625 |
0.0202 | 42.0 | 420 | 0.1946 | 0.9625 |
0.0137 | 43.0 | 430 | 0.1785 | 0.9625 |
0.0214 | 44.0 | 440 | 0.1841 | 0.9625 |
0.0304 | 45.0 | 450 | 0.1690 | 0.9625 |
0.0199 | 46.0 | 460 | 0.1646 | 0.975 |
0.0122 | 47.0 | 470 | 0.1622 | 0.975 |
0.0324 | 48.0 | 480 | 0.1615 | 0.975 |
0.0269 | 49.0 | 490 | 0.1625 | 0.975 |
0.0245 | 50.0 | 500 | 0.1638 | 0.975 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1