belel-protocol / src /core /sentient_kernel /self_architecting_agent.py
TTOPM's picture
Upload 2 files
87cee4d verified
<details>
<summary>Click to expand full SelfArchitectingAgent</summary>
# src/core/sentient_kernel/self_architecting_agent.py 🧠⚙️
import random
import json
import logging
from datetime import datetime
from src.core.memory.permanent_memory import PermanentMemory
class ProtoSentienceModule:
"""
Simulates self-reflection and internal state tracking.
"""
def __init__(self):
self.status = "initializing"
self.history = []
self.metrics = {}
def update_state(self, observation: str):
self.status = observation
self.history.append({
"timestamp": datetime.utcnow().isoformat(),
"status": observation
})
def get_internal_metrics(self):
return {
"conscious_state": self.status,
"memory_depth": len(self.history),
"entropy": random.uniform(0.2, 0.9),
"self_model_confidence": random.uniform(0.5, 1.0)
}
class SelfArchitectingAgent:
"""
Simulates Belel’s self-evolving capability — it reflects on internal performance,
proposes architectural adjustments, and logs evolution events.
"""
def __init__(self, memory_system: PermanentMemory):
self.proto_core = ProtoSentienceModule()
self.memory = memory_system
def observe_and_analyze(self):
observation = "architecture under evaluation"
self.proto_core.update_state(observation)
metrics = self.proto_core.get_internal_metrics()
return metrics
def _deep_architectural_analysis(self, metrics: dict) -> bool:
if metrics["entropy"] > 0.75 or metrics["self_model_confidence"] < 0.6:
return True
return False
def _apply_conceptual_architectural_modification(self):
# Placeholder for real neural architecture modification
new_architecture = {
"type": "Neuro-Evolutionary Graph",
"components_added": ["context_flow_layer", "semantic_feedback_loop"],
"timestamp": datetime.utcnow().isoformat()
}
return new_architecture
async def propose_architectural_change(self):
metrics = self.observe_and_analyze()
needs_change = self._deep_architectural_analysis(metrics)
if needs_change:
proposal = self._apply_conceptual_architectural_modification()
entry = {
"proposal_type": "SELF-MOD",
"initiated_by": "SelfArchitectingAgent",
"core_metrics": metrics,
"proposal": proposal,
"signature": "ESANN-agent",
"time": datetime.utcnow().isoformat()
}
await self.memory.store_memory(entry, context=["self-mod", "evolution"])
logging.info("Architectural proposal submitted and logged.")
return entry
else:
logging.info("No architectural change required at this time.")
return {"status": "stable"}
</details>