TSukiLen's picture
End of training
1a90a42 verified
|
raw
history blame
2.29 kB
metadata
library_name: transformers
language:
  - zh
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small chinese Test
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: nan-tw
          split: test
          args: 'config: zh-tw, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 94.0629839958699

Whisper Small chinese Test

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9213
  • Wer: 94.0630

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1069 3.6364 1000 0.7541 99.3289
0.0117 7.2727 2000 0.8330 93.9597
0.0015 10.9091 3000 0.8627 94.7858
0.0004 14.5455 4000 0.9036 93.3918
0.0002 18.1818 5000 0.9213 94.0630

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3