metadata
library_name: transformers
language:
- zh
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small chinese Test
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: nan-tw
split: test
args: 'config: zh-tw, split: test'
metrics:
- name: Wer
type: wer
value: 94.0629839958699
Whisper Small chinese Test
This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.9213
- Wer: 94.0630
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1069 | 3.6364 | 1000 | 0.7541 | 99.3289 |
0.0117 | 7.2727 | 2000 | 0.8330 | 93.9597 |
0.0015 | 10.9091 | 3000 | 0.8627 | 94.7858 |
0.0004 | 14.5455 | 4000 | 0.9036 | 93.3918 |
0.0002 | 18.1818 | 5000 | 0.9213 | 94.0630 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.4.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3