license: creativeml-openrail-m
language:
- en
tags:
- LLM
- tensorRT
- ChatGLM
Model Card for lyraChatGLM
lyraChatGLM is currently the fastest ChatGLM-6B available. To the best of our knowledge, it is the first accelerated version of ChatGLM-6B.
The inference speed of lyraChatGLM has achieved 10x acceleration upon the ealry original version. We are still working hard to further improve the performance.
Among its main features are:
- weights: original ChatGLM-6B weights released by THUDM.
- device: lyraChatGLM is mainly based on TensorRT compiled for SM=80 (A100, for example).
- batch_size: compiled with dynamic batch size, max batch_size = 8
Speed
test environment
- device: Nvidia A100 40G
- batch size: 8
Since early chatGLM version didn't suport batch inference, original
in below table was measured on batch_size=1
According to this discussion, this bug has been fixed and the speed on batch_size=8 reachs up to 137 tokens/s. We will evaluate and update the latest performance.
version | speed |
---|---|
original | 30 tokens/s |
lyraChatGLM | 310 tokens/s |
Model Sources
- Repository: https://huggingface.co/THUDM/chatglm-6b
Try Demo in 2 fast steps
#step 1
git clone https://huggingface.co/TMElyralab/lyraChatGLM
cd lyraChatGLM
#step 2
docker run --gpus=1 --rm --net=host -v ${PWD}:/workdir yibolu96/lyra-chatglm-env:0.0.1 python3 /workdir/demo.py
Uses
from transformers import AutoTokenizer
from lyraChatGLM import GLM6B, FasterChatGLM
import os
current_workdir = os.path.dirname(__file__)
MAX_OUT_LEN = 100
chatglm6b_dir = os.path.join(current_workdir, "models")
tokenizer = AutoTokenizer.from_pretrained(chatglm6b_dir, trust_remote_code=True)
input_str = ["为什么我们需要对深度学习模型加速?", ]
inputs = tokenizer(input_str, return_tensors="pt", padding=True)
input_ids = inputs.input_ids.to('cuda:0')
plan_path = os.path.join(current_workdir, "models/glm6b-bs8.ftm")
# kernel for chat model.
kernel = GLM6B(plan_path=plan_path,
batch_size=1,
num_beams=1,
use_cache=True,
num_heads=32,
emb_size_per_heads=128,
decoder_layers=28,
vocab_size=150528,
max_seq_len=MAX_OUT_LEN)
chat = FasterChatGLM(model_dir=chatglm6b_dir, kernel=kernel).half().cuda()
# generate
sample_output = chat.generate(inputs=input_ids, max_length=MAX_OUT_LEN)
# de-tokenize model output to text
res = tokenizer.decode(sample_output[0], skip_special_tokens=True)
print(res)
Demo output
input
为什么我们需要对深度学习模型加速? 。
output
为什么我们需要对深度学习模型加速? 深度学习模型的训练需要大量计算资源,特别是在训练模型时,需要大量的内存、GPU(图形处理器)和其他计算资源。因此,训练深度学习模型需要一定的时间,并且如果模型不能快速训练,则可能会导致训练进度缓慢或无法训练。
以下是一些原因我们需要对深度学习模型加速:
- 训练深度神经网络需要大量的计算资源,特别是在训练深度神经网络时,需要更多的计算资源,因此需要更快的训练速度。
TODO:
We plan to implement a FasterTransformer version to publish a much faster release. Stay tuned!
Citation
@Misc{lyraChatGLM2023,
author = {Kangjian Wu, Zhengtao Wang, Yibo Lu, Bin Wu},
title = {lyraChatGLM: Accelerating ChatGLM by 10x+},
howpublished = {\url{https://huggingface.co/TMElyralab/lyraChatGLM}},
year = {2023}
}
Report bug
- start a discussion to report any bugs!--> https://huggingface.co/TMElyralab/lyraChatGLM/discussions
- report bug with a
[bug]
mark in the title.