Upload infer.py
Browse files
infer.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
from mmpretrain import ImageClassificationInferencer
|
6 |
+
|
7 |
+
|
8 |
+
path = './testimg/'
|
9 |
+
config = 'convnext-v2-tiny_32xb32_in1k-384px.py'
|
10 |
+
checkpoint = 'ConvNeXt_v2-v2_ep90.pth'
|
11 |
+
|
12 |
+
|
13 |
+
inferencer = ImageClassificationInferencer(model=config, pretrained=checkpoint, device='cuda')
|
14 |
+
|
15 |
+
result={}
|
16 |
+
|
17 |
+
for root, dirs, files in os.walk(path):
|
18 |
+
for file in files:
|
19 |
+
if file.lower().endswith(('.png', '.jpg','jpeg')):
|
20 |
+
# print(os.path.join(root, file))
|
21 |
+
inf_result = inferencer(os.path.join(root, file))[0]
|
22 |
+
# print(result['pred_class'])
|
23 |
+
print(result,os.path.join(root, file))
|
24 |
+
result[os.path.join(root, file)]= [{'pred_class' : inf_result['pred_class']},{'pred_score' : inf_result['pred_score']}]
|
25 |
+
|
26 |
+
with open(path + "predict_result.json", "w") as file:
|
27 |
+
json.dump(result, file, ensure_ascii=False,indent=2)
|