Update README.md
Browse files
README.md
CHANGED
@@ -41,6 +41,7 @@ Our model can outperform the existing baselines by a huge margin.
|
|
41 |
First you can clone our github
|
42 |
```bash
|
43 |
git clone https://github.com/TIGER-AI-Lab/VLM2Vec.git
|
|
|
44 |
```
|
45 |
|
46 |
Then you can enter the directory to run the following command.
|
@@ -53,7 +54,7 @@ from PIL import Image
|
|
53 |
import numpy as np
|
54 |
|
55 |
model_args = ModelArguments(
|
56 |
-
model_name='microsoft/Phi-3.5-vision-instruct',
|
57 |
pooling='last',
|
58 |
normalize=True,
|
59 |
lora=True,
|
@@ -74,17 +75,19 @@ inputs = processor('<|image_1|> Represent the given image with the following que
|
|
74 |
inputs = {key: value.to('cuda') for key, value in inputs.items()}
|
75 |
qry_output = model(qry=inputs)["qry_reps"]
|
76 |
|
77 |
-
## Compute the similarity;
|
78 |
string = 'A cat and a dog'
|
79 |
inputs = processor(string)
|
80 |
inputs = {key: value.to('cuda') for key, value in inputs.items()}
|
81 |
tgt_output = model(tgt=inputs)["tgt_reps"]
|
82 |
print(string, '=', model.compute_similarity(qry_output, tgt_output))
|
|
|
83 |
|
|
|
84 |
inputs = processor(string)
|
85 |
inputs = {key: value.to('cuda') for key, value in inputs.items()}
|
86 |
tgt_output = model(tgt=inputs)["tgt_reps"]
|
87 |
print(string, '=', model.compute_similarity(qry_output, tgt_output))
|
|
|
88 |
|
89 |
# Text -> Image
|
90 |
inputs = processor('Find me an everyday image that matches the given caption: A cat and a dog.',)
|
@@ -92,10 +95,11 @@ inputs = {key: value.to('cuda') for key, value in inputs.items()}
|
|
92 |
qry_output = model(qry=inputs)["qry_reps"]
|
93 |
|
94 |
string = '<|image_1|> Represent the given image.'
|
95 |
-
inputs = processor(string, [Image.open('figures/example.jpg')]
|
96 |
inputs = {key: value.to('cuda') for key, value in inputs.items()}
|
97 |
tgt_output = model(tgt=inputs)["tgt_reps"]
|
98 |
print(string, '=', model.compute_similarity(qry_output, tgt_output))
|
|
|
99 |
```
|
100 |
|
101 |
## Citation
|
|
|
41 |
First you can clone our github
|
42 |
```bash
|
43 |
git clone https://github.com/TIGER-AI-Lab/VLM2Vec.git
|
44 |
+
pip -r requirements.txt
|
45 |
```
|
46 |
|
47 |
Then you can enter the directory to run the following command.
|
|
|
54 |
import numpy as np
|
55 |
|
56 |
model_args = ModelArguments(
|
57 |
+
model_name='microsoft/Phi-3.5-vision-instruct',
|
58 |
pooling='last',
|
59 |
normalize=True,
|
60 |
lora=True,
|
|
|
75 |
inputs = {key: value.to('cuda') for key, value in inputs.items()}
|
76 |
qry_output = model(qry=inputs)["qry_reps"]
|
77 |
|
|
|
78 |
string = 'A cat and a dog'
|
79 |
inputs = processor(string)
|
80 |
inputs = {key: value.to('cuda') for key, value in inputs.items()}
|
81 |
tgt_output = model(tgt=inputs)["tgt_reps"]
|
82 |
print(string, '=', model.compute_similarity(qry_output, tgt_output))
|
83 |
+
## A cat and a dog = tensor([[0.2969]], device='cuda:0', dtype=torch.bfloat16)
|
84 |
|
85 |
+
string = 'A cat and a tiger'
|
86 |
inputs = processor(string)
|
87 |
inputs = {key: value.to('cuda') for key, value in inputs.items()}
|
88 |
tgt_output = model(tgt=inputs)["tgt_reps"]
|
89 |
print(string, '=', model.compute_similarity(qry_output, tgt_output))
|
90 |
+
## A cat and a tiger = tensor([[0.2080]], device='cuda:0', dtype=torch.bfloat16)
|
91 |
|
92 |
# Text -> Image
|
93 |
inputs = processor('Find me an everyday image that matches the given caption: A cat and a dog.',)
|
|
|
95 |
qry_output = model(qry=inputs)["qry_reps"]
|
96 |
|
97 |
string = '<|image_1|> Represent the given image.'
|
98 |
+
inputs = processor(string, [Image.open('figures/example.jpg')])
|
99 |
inputs = {key: value.to('cuda') for key, value in inputs.items()}
|
100 |
tgt_output = model(tgt=inputs)["tgt_reps"]
|
101 |
print(string, '=', model.compute_similarity(qry_output, tgt_output))
|
102 |
+
## <|image_1|> Represent the given image. = tensor([[0.3105]], device='cuda:0', dtype=torch.bfloat16)
|
103 |
```
|
104 |
|
105 |
## Citation
|