|
--- |
|
license: other |
|
license_name: glm-4 |
|
license_link: https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/LICENSE |
|
|
|
language: |
|
- zh |
|
- en |
|
tags: |
|
- glm |
|
- chatglm |
|
- thudm |
|
inference: false |
|
--- |
|
|
|
# GLM-4-9B-Chat |
|
|
|
GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。 |
|
在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B 及其人类偏好对齐的版本 GLM-4-9B-Chat 均表现出较高的性能。 |
|
除了能进行多轮对话,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K |
|
上下文)等高级功能。 |
|
本代模型增加了多语言支持,支持包括日语,韩语,德语在内的 26 种语言。我们还推出了支持 1M 上下文长度(约 200 万中文字符)的模型。 |
|
|
|
## 评测结果 |
|
|
|
我们在一些经典任务上对 GLM-4-9B-Chat 模型进行了评测,并得到了如下的结果: |
|
|
|
| Model | AlignBench-v2 | MT-Bench | IFEval | MMLU | C-Eval | GSM8K | MATH | HumanEval | NCB | |
|
|:--------------------|:-------------:|:--------:|:------:|:----:|:------:|:-----:|:----:|:---------:|:----:| |
|
| Llama-3-8B-Instruct | 5.12 | 8.00 | 68.58 | 68.4 | 51.3 | 79.6 | 30.0 | 62.2 | 24.7 | |
|
| ChatGLM3-6B | 3.97 | 5.50 | 28.1 | 66.4 | 69.0 | 72.3 | 25.7 | 58.5 | 11.3 | |
|
| GLM-4-9B-Chat | 6.61 | 8.35 | 69.0 | 72.4 | 75.6 | 79.6 | 50.6 | 71.8 | 32.2 | |
|
|
|
|
|
### 长文本 |
|
|
|
在 1M 的上下文长度下进行[大海捞针实验](https://github.com/LargeWorldModel/LWM/blob/main/scripts/eval_needle.py),结果如下: |
|
|
|
![needle](https://raw.githubusercontent.com/THUDM/GLM-4/main/resources/eval_needle.jpeg) |
|
|
|
在 LongBench-Chat 上对长文本能力进行了进一步评测,结果如下: |
|
|
|
![leaderboard](https://raw.githubusercontent.com/THUDM/GLM-4/main/resources/longbench.png) |
|
|
|
### 多语言能力 |
|
|
|
在六个多语言数据集上对 GLM-4-9B-Chat 和 Llama-3-8B-Instruct 进行了测试,测试结果及数据集对应选取语言如下表 |
|
|
|
| Dataset | Llama-3-8B-Instruct | GLM-4-9B-Chat | Languages |
|
|:------------|:-------------------:|:-------------:|:----------------------------------------------------------------------------------------------:| |
|
| M-MMLU | 49.6 | 56.6 | all |
|
| FLORES | 25.0 | 28.8 | ru, es, de, fr, it, pt, pl, ja, nl, ar, tr, cs, vi, fa, hu, el, ro, sv, uk, fi, ko, da, bg, no |
|
| MGSM | 54.0 | 65.3 | zh, en, bn, de, es, fr, ja, ru, sw, te, th |
|
| XWinograd | 61.7 | 73.1 | zh, en, fr, jp, ru, pt |
|
| XStoryCloze | 84.7 | 90.7 | zh, en, ar, es, eu, hi, id, my, ru, sw, te |
|
| XCOPA | 73.3 | 80.1 | zh, et, ht, id, it, qu, sw, ta, th, tr, vi |
|
|
|
|
|
|
|
### 工具调用能力 |
|
|
|
我们在 [Berkeley Function Calling Leaderboard](https://github.com/ShishirPatil/gorilla/tree/main/berkeley-function-call-leaderboard)上进行了测试并得到了以下结果: |
|
|
|
| Model | Overall Acc. | AST Summary | Exec Summary | Relevance | |
|
|:-----------------------|:------------:|:-----------:|:------------:|:---------:| |
|
| Llama-3-8B-Instruct | 58.88 | 59.25 | 70.01 | 45.83 | |
|
| gpt-4-turbo-2024-04-09 | 81.24 | 82.14 | 78.61 | 88.75 | |
|
| ChatGLM3-6B | 57.88 | 62.18 | 69.78 | 5.42 | |
|
| GLM-4-9B-Chat | 81.00 | 80.26 | 84.40 | 87.92 | |
|
|
|
**本仓库是 GLM-4-9B-Chat 的模型仓库,支持`128K`上下文长度。** |
|
|
|
## 运行模型 |
|
|
|
使用 transformers 后端进行推理: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
device = "cuda" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat",trust_remote_code=True) |
|
|
|
query = "你好" |
|
|
|
inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}], |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_tensors="pt", |
|
return_dict=True |
|
) |
|
|
|
inputs = inputs.to(device) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"THUDM/glm-4-9b-chat", |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True |
|
).to(device).eval() |
|
|
|
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1} |
|
with torch.no_grad(): |
|
outputs = model.generate(**inputs, **gen_kwargs) |
|
outputs = outputs[:, inputs['input_ids'].shape[1]:] |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
使用 VLLM后端进行推理: |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from vllm import LLM, SamplingParams |
|
|
|
# GLM-4-9B-Chat |
|
max_model_len, tp_size = 131072, 1 |
|
model_name = "THUDM/glm-4-9b-chat" |
|
prompt = '你好' |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
llm = LLM( |
|
model=model_name, |
|
tensor_parallel_size=tp_size, |
|
max_model_len=max_model_len, |
|
trust_remote_code=True, |
|
enforce_eager=True, |
|
) |
|
stop_token_ids = [151329, 151336, 151338] |
|
sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids) |
|
|
|
inputs = tokenizer.build_chat_input(prompt, history=None, role='user')['input_ids'].tolist() |
|
outputs = llm.generate(prompt_token_ids=inputs, sampling_params=sampling_params) |
|
|
|
generated_text = [output.outputs[0].text for output in outputs] |
|
print(generated_text) |
|
``` |
|
|
|
## 协议 |
|
|
|
GLM-4 模型的权重的使用则需要遵循 [LICENSE](LICENSE)。 |
|
|
|
Rhe use of the GLM-4 model weights needs to comply with the [LICENSE](LICENSE). |
|
|
|
## 引用 |
|
|
|
如果你觉得我们的工作有帮助的话,请考虑引用下列论文。 |
|
|
|
``` |
|
@article{zeng2022glm, |
|
title={Glm-130b: An open bilingual pre-trained model}, |
|
author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others}, |
|
journal={arXiv preprint arXiv:2210.02414}, |
|
year={2022} |
|
} |
|
``` |
|
|
|
``` |
|
@inproceedings{du2022glm, |
|
title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling}, |
|
author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie}, |
|
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, |
|
pages={320--335}, |
|
year={2022} |
|
} |
|
``` |
|
|