qingsonglv
commited on
Commit
·
bb6c740
1
Parent(s):
aa968b3
Update visual.py
Browse files
visual.py
CHANGED
@@ -1,136 +1,136 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
from argparse import Namespace
|
4 |
-
import xformers.ops as xops
|
5 |
-
from transformers.activations import ACT2FN
|
6 |
-
|
7 |
-
|
8 |
-
class PatchEmbedding(nn.Module):
|
9 |
-
def __init__(self, config):
|
10 |
-
super().__init__()
|
11 |
-
self.proj = nn.Conv2d(config.in_channels, config.hidden_size, kernel_size=config.patch_size, stride=config.patch_size)
|
12 |
-
self.cls_embedding = nn.Parameter(torch.zeros(1, config.hidden_size))
|
13 |
-
self.position_embedding = nn.Embedding(config.num_positions, config.hidden_size)
|
14 |
-
|
15 |
-
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
|
16 |
-
x = self.proj(images)
|
17 |
-
x = x.flatten(2).transpose(1, 2)
|
18 |
-
cls_token = self.cls_embedding.expand(x.shape[0], -1, -1)
|
19 |
-
x = torch.cat((cls_token, x), dim=1)
|
20 |
-
x += self.position_embedding.weight.unsqueeze(0)
|
21 |
-
return x
|
22 |
-
|
23 |
-
|
24 |
-
class Attention(nn.Module):
|
25 |
-
def __init__(self, config):
|
26 |
-
super().__init__()
|
27 |
-
self.num_heads = config.num_heads
|
28 |
-
head_dim = config.hidden_size // config.num_heads
|
29 |
-
self.scale = head_dim ** -0.5
|
30 |
-
self.query_key_value = nn.Linear(config.hidden_size, config.hidden_size * 3)
|
31 |
-
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
32 |
-
self.output_dropout = torch.nn.Dropout(config.dropout_prob)
|
33 |
-
|
34 |
-
def forward(self, x: "tensor(B, L, D)") -> "tensor(B, L, D)":
|
35 |
-
B, L, _ = x.shape
|
36 |
-
qkv = self.query_key_value(x)
|
37 |
-
qkv = qkv.reshape(B, L, 3, self.num_heads, -1).permute(2, 0, 1, 3, 4) # 3, B, L, H, D
|
38 |
-
q, k, v = qkv[0], qkv[1], qkv[2]
|
39 |
-
|
40 |
-
out = xops.memory_efficient_attention(
|
41 |
-
q, k, v, scale=self.scale,
|
42 |
-
)
|
43 |
-
output = self.dense(out.view(B, L, -1))
|
44 |
-
output = self.output_dropout(output)
|
45 |
-
return output
|
46 |
-
|
47 |
-
def attention(self, q, k, v):
|
48 |
-
attn_weights = torch.matmul(q * self.scale, k.transpose(-2, -1))
|
49 |
-
attn_weights = attn_weights.softmax(dim=-1)
|
50 |
-
output = torch.matmul(attn_weights, v)
|
51 |
-
return output
|
52 |
-
|
53 |
-
|
54 |
-
class MLP(nn.Module):
|
55 |
-
def __init__(self, config):
|
56 |
-
super().__init__()
|
57 |
-
self.config = config
|
58 |
-
self.activation_fn = ACT2FN[config.hidden_act]
|
59 |
-
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
60 |
-
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
61 |
-
|
62 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
63 |
-
x = self.fc1(x)
|
64 |
-
x = self.activation_fn(x)
|
65 |
-
x = self.fc2(x)
|
66 |
-
return x
|
67 |
-
|
68 |
-
|
69 |
-
class TransformerLayer(nn.Module):
|
70 |
-
def __init__(self, config):
|
71 |
-
super().__init__()
|
72 |
-
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
73 |
-
self.attention = Attention(config)
|
74 |
-
self.mlp = MLP(config)
|
75 |
-
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
76 |
-
|
77 |
-
def forward(self, hidden_states):
|
78 |
-
attention_input = hidden_states
|
79 |
-
attention_output = self.input_layernorm(self.attention(attention_input))
|
80 |
-
hidden_states = attention_input + attention_output
|
81 |
-
mlp_input = hidden_states
|
82 |
-
mlp_output = self.post_attention_layernorm(self.mlp(mlp_input))
|
83 |
-
output = mlp_input + mlp_output
|
84 |
-
return output
|
85 |
-
|
86 |
-
|
87 |
-
class Transformer(nn.Module):
|
88 |
-
def __init__(self, config):
|
89 |
-
super().__init__()
|
90 |
-
self.layers = nn.ModuleList([TransformerLayer(config) for _ in range(config.num_hidden_layers)])
|
91 |
-
|
92 |
-
def forward(self, hidden_states):
|
93 |
-
for layer_module in self.layers:
|
94 |
-
hidden_states = layer_module(hidden_states)
|
95 |
-
return hidden_states
|
96 |
-
|
97 |
-
|
98 |
-
class GLU(nn.Module):
|
99 |
-
def __init__(self, config, in_features):
|
100 |
-
super().__init__()
|
101 |
-
self.linear_proj = nn.Linear(in_features, config.hidden_size, bias=False)
|
102 |
-
self.norm1 = nn.LayerNorm(config.hidden_size)
|
103 |
-
self.act1 = nn.GELU()
|
104 |
-
self.act2 = nn.functional.silu
|
105 |
-
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
106 |
-
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
107 |
-
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
108 |
-
|
109 |
-
def forward(self, x):
|
110 |
-
x = self.linear_proj(x)
|
111 |
-
x = self.act1(self.norm1(x))
|
112 |
-
x = self.act2(self.gate_proj(x)) * self.dense_h_to_4h(x)
|
113 |
-
x = self.dense_4h_to_h(x)
|
114 |
-
return x
|
115 |
-
|
116 |
-
|
117 |
-
class EVA2CLIPModel(nn.Module):
|
118 |
-
def __init__(self, config):
|
119 |
-
super().__init__()
|
120 |
-
vision_config = Namespace(**config.vision_config)
|
121 |
-
self.patch_embedding = PatchEmbedding(vision_config)
|
122 |
-
self.transformer = Transformer(vision_config)
|
123 |
-
self.linear_proj = GLU(config, in_features=vision_config.hidden_size)
|
124 |
-
self.boi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
125 |
-
self.eoi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
126 |
-
self.pos_embed = nn.Parameter(torch.zeros((vision_config.image_size // vision_config.patch_size) ** 2, vision_config.hidden_size))
|
127 |
-
|
128 |
-
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
|
129 |
-
x = self.patch_embedding(images)
|
130 |
-
x = self.transformer(x)
|
131 |
-
x = x[:, 1:]
|
132 |
-
x = self.linear_proj(x + self.pos_embed.unsqueeze(0))
|
133 |
-
boi = self.boi.expand(x.shape[0], -1, -1)
|
134 |
-
eoi = self.eoi.expand(x.shape[0], -1, -1)
|
135 |
-
x = torch.cat((boi, x, eoi), dim=1)
|
136 |
-
return x
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from argparse import Namespace
|
4 |
+
import xformers.ops as xops
|
5 |
+
from transformers.activations import ACT2FN
|
6 |
+
|
7 |
+
|
8 |
+
class PatchEmbedding(nn.Module):
|
9 |
+
def __init__(self, config):
|
10 |
+
super().__init__()
|
11 |
+
self.proj = nn.Conv2d(config.in_channels, config.hidden_size, kernel_size=config.patch_size, stride=config.patch_size)
|
12 |
+
self.cls_embedding = nn.Parameter(torch.zeros(1, config.hidden_size))
|
13 |
+
self.position_embedding = nn.Embedding(config.num_positions, config.hidden_size)
|
14 |
+
|
15 |
+
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
|
16 |
+
x = self.proj(images)
|
17 |
+
x = x.flatten(2).transpose(1, 2)
|
18 |
+
cls_token = self.cls_embedding.expand(x.shape[0], -1, -1)
|
19 |
+
x = torch.cat((cls_token, x), dim=1)
|
20 |
+
x += self.position_embedding.weight.unsqueeze(0)
|
21 |
+
return x
|
22 |
+
|
23 |
+
|
24 |
+
class Attention(nn.Module):
|
25 |
+
def __init__(self, config):
|
26 |
+
super().__init__()
|
27 |
+
self.num_heads = config.num_heads
|
28 |
+
head_dim = config.hidden_size // config.num_heads
|
29 |
+
self.scale = head_dim ** -0.5
|
30 |
+
self.query_key_value = nn.Linear(config.hidden_size, config.hidden_size * 3)
|
31 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
32 |
+
self.output_dropout = torch.nn.Dropout(config.dropout_prob)
|
33 |
+
|
34 |
+
def forward(self, x: "tensor(B, L, D)") -> "tensor(B, L, D)":
|
35 |
+
B, L, _ = x.shape
|
36 |
+
qkv = self.query_key_value(x)
|
37 |
+
qkv = qkv.reshape(B, L, 3, self.num_heads, -1).permute(2, 0, 1, 3, 4) # 3, B, L, H, D
|
38 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
39 |
+
|
40 |
+
out = xops.memory_efficient_attention(
|
41 |
+
q, k, v, scale=self.scale,
|
42 |
+
)
|
43 |
+
output = self.dense(out.view(B, L, -1))
|
44 |
+
output = self.output_dropout(output)
|
45 |
+
return output
|
46 |
+
|
47 |
+
def attention(self, q, k, v):
|
48 |
+
attn_weights = torch.matmul(q * self.scale, k.transpose(-2, -1))
|
49 |
+
attn_weights = attn_weights.softmax(dim=-1)
|
50 |
+
output = torch.matmul(attn_weights, v)
|
51 |
+
return output
|
52 |
+
|
53 |
+
|
54 |
+
class MLP(nn.Module):
|
55 |
+
def __init__(self, config):
|
56 |
+
super().__init__()
|
57 |
+
self.config = config
|
58 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
59 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
60 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
61 |
+
|
62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
63 |
+
x = self.fc1(x)
|
64 |
+
x = self.activation_fn(x)
|
65 |
+
x = self.fc2(x)
|
66 |
+
return x
|
67 |
+
|
68 |
+
|
69 |
+
class TransformerLayer(nn.Module):
|
70 |
+
def __init__(self, config):
|
71 |
+
super().__init__()
|
72 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
73 |
+
self.attention = Attention(config)
|
74 |
+
self.mlp = MLP(config)
|
75 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
76 |
+
|
77 |
+
def forward(self, hidden_states):
|
78 |
+
attention_input = hidden_states
|
79 |
+
attention_output = self.input_layernorm(self.attention(attention_input))
|
80 |
+
hidden_states = attention_input + attention_output
|
81 |
+
mlp_input = hidden_states
|
82 |
+
mlp_output = self.post_attention_layernorm(self.mlp(mlp_input))
|
83 |
+
output = mlp_input + mlp_output
|
84 |
+
return output
|
85 |
+
|
86 |
+
|
87 |
+
class Transformer(nn.Module):
|
88 |
+
def __init__(self, config):
|
89 |
+
super().__init__()
|
90 |
+
self.layers = nn.ModuleList([TransformerLayer(config) for _ in range(config.num_hidden_layers)])
|
91 |
+
|
92 |
+
def forward(self, hidden_states):
|
93 |
+
for layer_module in self.layers:
|
94 |
+
hidden_states = layer_module(hidden_states)
|
95 |
+
return hidden_states
|
96 |
+
|
97 |
+
|
98 |
+
class GLU(nn.Module):
|
99 |
+
def __init__(self, config, in_features):
|
100 |
+
super().__init__()
|
101 |
+
self.linear_proj = nn.Linear(in_features, config.hidden_size, bias=False)
|
102 |
+
self.norm1 = nn.LayerNorm(config.hidden_size)
|
103 |
+
self.act1 = nn.GELU()
|
104 |
+
self.act2 = nn.functional.silu
|
105 |
+
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
106 |
+
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
107 |
+
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
x = self.linear_proj(x)
|
111 |
+
x = self.act1(self.norm1(x))
|
112 |
+
x = self.act2(self.gate_proj(x)) * self.dense_h_to_4h(x)
|
113 |
+
x = self.dense_4h_to_h(x)
|
114 |
+
return x
|
115 |
+
|
116 |
+
|
117 |
+
class EVA2CLIPModel(nn.Module):
|
118 |
+
def __init__(self, config):
|
119 |
+
super().__init__()
|
120 |
+
vision_config = Namespace(**config.vision_config)
|
121 |
+
self.patch_embedding = PatchEmbedding(vision_config)
|
122 |
+
self.transformer = Transformer(vision_config)
|
123 |
+
self.linear_proj = GLU(config, in_features=vision_config.hidden_size)
|
124 |
+
self.boi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
125 |
+
self.eoi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
126 |
+
self.pos_embed = nn.Parameter(torch.zeros((vision_config.image_size // vision_config.patch_size) ** 2, vision_config.hidden_size))
|
127 |
+
|
128 |
+
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
|
129 |
+
x = self.patch_embedding(images)
|
130 |
+
x = self.transformer(x)
|
131 |
+
x = x[:, 1:]
|
132 |
+
x = self.linear_proj(x + self.pos_embed.to(x.device).unsqueeze(0))
|
133 |
+
boi = self.boi.expand(x.shape[0], -1, -1)
|
134 |
+
eoi = self.eoi.expand(x.shape[0], -1, -1)
|
135 |
+
x = torch.cat((boi, x, eoi), dim=1)
|
136 |
+
return x
|