codegeex4-all-9b / tokenization_chatglm.py
Stanislas's picture
Upload folder using huggingface_hub
7b171f7 verified
raw
history blame
16.6 kB
import base64
import json
import os
from typing import List, Optional, Union, Dict, Any
import regex as re
import tiktoken
from torch import TensorType
from transformers import PreTrainedTokenizer
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
from transformers.utils import PaddingStrategy
class ChatGLM4Tokenizer(PreTrainedTokenizer):
vocab_files_names = {"vocab_file": "tokenizer.model"}
model_input_names = ["input_ids", "attention_mask", "position_ids"]
def __init__(
self,
vocab_file,
padding_side="left",
clean_up_tokenization_spaces=False,
encode_special_tokens=False,
**kwargs
):
self.name = "GLM4Tokenizer"
self.vocab_file = vocab_file
pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
self.pat_str = re.compile(pat_str)
self.encode_special_tokens = encode_special_tokens
mergeable_ranks = {}
with open(vocab_file) as f:
for line in f:
token, rank = line.strip().split()
rank = int(rank)
token = base64.b64decode(token)
mergeable_ranks[token] = rank
self.mergeable_ranks = mergeable_ranks
self.tokenizer = tiktoken.Encoding(
name="my_tokenizer",
pat_str=pat_str,
mergeable_ranks=mergeable_ranks,
special_tokens={v.content: int(k) for k, v in kwargs['added_tokens_decoder'].items()}
# special_tokens={}
)
self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
self.n_words = len(self.decoder)
super().__init__(
padding_side=padding_side,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs
)
@property
def vocab_size(self):
return self.n_words
def get_vocab(self):
""" Returns vocab as a dict """
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
@staticmethod
def convert_tokens_to_string(tokens: List[Union[bytes, str]]) -> str:
"""
Converts a sequence of tokens in a single string.
"""
text = ""
temp = b""
for t in tokens:
if isinstance(t, str):
if temp:
text += temp.decode("utf-8", errors="replace")
temp = b""
text += t
elif isinstance(t, bytes):
temp += t
else:
raise TypeError("token should only be of type types or str")
if temp:
text += temp.decode("utf-8", errors="replace")
return text
def _tokenize(self, text, **kwargs):
tokens = []
ids = self.tokenizer.encode(text)
for t in ids:
tokens.append(self.decoder[t])
return tokens
def _convert_token_to_id(self, token):
""" Converts a token (str) in an id using the vocab. """
return self.mergeable_ranks[token]
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, "")
def save_vocabulary(self, save_directory, filename_prefix=None):
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
filename_prefix (`str`, *optional*):
An optional prefix to add to the named of the saved files.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, self.vocab_files_names["vocab_file"]
)
else:
vocab_file = save_directory
with open(self.vocab_file, 'rb') as fin:
proto_str = fin.read()
with open(vocab_file, "wb") as writer:
writer.write(proto_str)
return (vocab_file,)
def get_prefix_tokens(self):
prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")]
return prefix_tokens
def apply_chat_template(
self,
conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]]],
add_generation_prompt: bool = False,
tokenize: bool = True,
padding: bool = False,
truncation: bool = False,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_dict: bool = False,
tokenizer_kwargs: Optional[Dict[str, Any]] = None,
add_special_tokens: bool = True,
**kwargs,
) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]:
if return_dict and not tokenize:
raise ValueError(
"`return_dict=True` is incompatible with `tokenize=False`, because there is no dict "
"of tokenizer outputs to return."
)
def handle_single_conversation(messages):
content = "你是一位智能编程助手,你叫CodeGeeX。你会为用户回答关于编程、代码、计算机方面的任何问题,并提供格式规范、可以执行、准确安全的代码,并在必要时提供详细的解释。"
input_message = self.build_single_message("system", "", content)
for item in messages:
role = item.get("role", "")
if not role:
raise ValueError("Invalid conversation format, 'role' must be given")
# function call
elif role == "tool":
content = self.build_function_sys_prompt(item["content"])
input_message = self.build_single_message("system", "", content)
# chat
elif role == "system":
input_message = self.build_single_message("system", item.get("metadata", ""), item["content"])
else:
input_message += self.build_single_message(item["role"], item.get("metadata", ""), item["content"])
if add_generation_prompt:
input_message += "<|assistant|>\n"
if tokenize:
input_ids = self.get_prefix_tokens() if add_special_tokens else []
input_ids += self.tokenizer.encode(input_message, allowed_special='all', disallowed_special=set())
return input_ids
else:
return input_message
# Main logic to handle different conversation formats
if isinstance(conversation, list) and all(isinstance(i, dict) for i in conversation):
result = handle_single_conversation(conversation)
elif isinstance(conversation, list) and all(isinstance(i, list) for i in conversation):
result = [handle_single_conversation(c) for c in conversation]
elif hasattr(conversation, "messages"):
result = handle_single_conversation(conversation.messages)
else:
raise ValueError("Invalid conversation format")
if tokenize:
output = self.batch_encode_plus(
[result] if isinstance(result[0], int) else result,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
is_split_into_words=True,
add_special_tokens=False
)
if return_dict:
return output
else:
return output["input_ids"]
else:
return result
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
prefix_tokens = self.get_prefix_tokens()
token_ids_0 = prefix_tokens + token_ids_0
if token_ids_1 is not None:
token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("<eos>")]
return token_ids_0
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
Args:
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
return_attention_mask:
(optional) Set to 'False' to avoid returning attention mask (default: set to model specifics)
"""
# Load from model defaults
assert self.padding_side == "left"
required_input = encoded_inputs[self.model_input_names[0]]
seq_length = len(required_input)
if padding_strategy == PaddingStrategy.LONGEST:
max_length = len(required_input)
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
# Initialize attention mask if not present.
if "attention_mask" not in encoded_inputs:
encoded_inputs["attention_mask"] = [1] * seq_length
if "position_ids" not in encoded_inputs:
encoded_inputs["position_ids"] = list(range(seq_length))
if needs_to_be_padded:
difference = max_length - len(required_input)
if "attention_mask" in encoded_inputs:
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
if "position_ids" in encoded_inputs:
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
return encoded_inputs
@staticmethod
def build_single_message(role, metadata, message):
assert role in ["system", "user", "assistant", "observation"], role
return f"<|{role}|>{metadata}\n{message}"
@staticmethod
def build_function_sys_prompt(item: dict) -> str:
prompt = """
你将接收到一个用户提出的问题,并请撰写清晰、简洁且准确的答案。
# Note
- 我将给你提供一些函数工具的接口信息,包括函数的定义、用途、名字、参数名和参数类型。
- 请根据这些信息,为用户的指令,从中选择最合适的函数,并给出调用时需要使用的参数。
- **返回类型为一个json格式的字符串,包含函数名和参数字典。**
- name: 函数名
- arguments: 参数字典,其中key为参数名,value为参数类型。
- **只需要生成答案即可,无需在你的回答之前或之后做出解释,也不要直接回答用户的问题。**
- 只用当提供的函数工具不足以完成任务时,请你用正常的语气告知用户并解释原因。
# Functions
以下是可使用的函数工具的接口信息。
""".lstrip()
if isinstance(item['function'], dict):
func = item['function']
prompt += f"\n## Function 1\n"
prompt += f"\n### Name\n{func['name']}\n"
prompt += f"\n### Description\n{func['description']}\n"
prompt += f"\n### Parameters\n```json\n{json.dumps(func['parameters'], ensure_ascii=False)}\n```\n"
return prompt
elif isinstance(item['function'], list):
for idx, func in enumerate(item['function']):
prompt += f"\n## Function {idx + 1}\n"
prompt += f"\n### Name\n{func['name']}\n"
prompt += f"\n### Description\n{func['description']}\n"
prompt += f"\n### Parameters\n```json\n{json.dumps(func['parameters'], ensure_ascii=False)}\n```\n"
return prompt
def apply_infilling_template(
self,
message: dict,
add_generation_prompt: bool = False,
tokenize: bool = True,
padding: bool = False,
truncation: bool = False,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_dict: bool = False,
add_special_tokens: bool = True,
) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]:
if return_dict and not tokenize:
raise ValueError(
"`return_dict=True` is incompatible with `tokenize=False`, because there is no dict "
"of tokenizer outputs to return."
)
if not isinstance(message, dict):
raise ValueError("Invalid conversation format")
content = self.build_infilling_prompt(message)
input_message = self.build_single_message("user", "", content)
if add_generation_prompt:
input_message += "<|assistant|>\n"
if not tokenize:
return input_message
input_ids = self.get_prefix_tokens() if add_special_tokens else []
input_ids += self.tokenizer.encode(input_message, allowed_special='all', disallowed_special=set())
output = self.batch_encode_plus(
[input_ids] if isinstance(input_ids[0], int) else input_ids,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
is_split_into_words=True,
add_special_tokens=False
)
if return_dict:
return output
else:
return output["input_ids"]
@staticmethod
def build_infilling_prompt(item: dict) -> str:
prompt = ""
if "path" in item:
prompt += f"###PATH:{item['path']}\n"
if "language" in item:
prompt += f"###LANGUAGE:{item['language']}\n"
elif "lang" in item:
prompt += f"###LANGUAGE:{item['lang']}\n"
if "mode" in item and item['mode'].lower() == "line":
prompt += "###MODE:LINE\n"
else:
prompt += "###MODE:BLOCK\n"
prompt += f"<|code_suffix|>{item['suffix']}"
prompt += f"<|code_prefix|>{item['prefix']}"
prompt += "<|code_middle|>"
return prompt