chatglm3-6b-base / README.md
duzx16
Fix links
c656177
|
raw
history blame
4.27 kB
metadata
language:
  - zh
  - en
tags:
  - glm
  - chatglm
  - thudm

ChatGLM3-6B-Base

💻 Github Repo • 🐦 Twitter • 📃 [GLM@ACL 22] [GitHub] • 📃 [GLM-130B@ICLR 23] [GitHub]

👋 Join our Slack and WeChat

📍Experience the larger-scale ChatGLM model at chatglm.cn

介绍

ChatGLM3-6B 是 ChatGLM 系列最新一代的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性:

  1. 更强大的基础模型: ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base 具有在 10B 以下的预训练模型中最强的性能。
  2. 更完整的功能支持: ChatGLM3-6B 采用了全新设计的 Prompt 格式,除正常的多轮对话外。同时原生支持工具调用(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。
  3. 更全面的开源序列: 除了对话模型 ChatGLM3-6B 外,还开源了基础模型 ChatGLM-6B-Base、长文本对话模型 ChatGLM3-6B-32K。以上所有权重对学术研究完全开放,在填写问卷进行登记后亦允许免费商业使用

本仓库为 ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base。

软件依赖

pip install protobuf transformers==4.30.2 cpm_kernels torch>=2.0 gradio mdtex2html sentencepiece accelerate

代码调用

作为没有经过人类意图对齐的模型,ChatGLM3-6B-Base 不能用于多轮对话。但是可以进行文本续写。

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-base", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm3-6b-base", trust_remote_code=True).half().cuda()

inputs = tokenizer(["今天天气真不错"], return_tensors="pt").to('cuda')
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0].tolist()))

关于更多的使用说明,包括如何运行命令行和网页版本的 DEMO,以及使用模型量化以节省显存,请参考我们的 Github Repo

For more instructions, including how to run CLI and web demos, and model quantization, please refer to our Github Repo.

协议

本仓库的代码依照 Apache-2.0 协议开源,ChatGLM3-6B 模型的权重的使用则需要遵循 Model License

引用

如果你觉得我们的工作有帮助的话,请考虑引用下列论文。

@article{zeng2022glm,
  title={Glm-130b: An open bilingual pre-trained model},
  author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others},
  journal={arXiv preprint arXiv:2210.02414},
  year={2022}
}
@inproceedings{du2022glm,
  title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
  author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
  booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
  pages={320--335},
  year={2022}
}