davidlvxin commited on
Commit
a74f280
·
verified ·
1 Parent(s): e489903

Upload folder using huggingface_hub

Browse files
.mdl ADDED
Binary file (57 Bytes). View file
 
.msc ADDED
Binary file (1.11 kB). View file
 
.mv ADDED
@@ -0,0 +1 @@
 
 
1
+ Revision:master,CreatedAt:1729485048
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoModelForCausalLM": "modeling_llama.LlamaForCausalLM"
7
+ },
8
+ "attention_bias": false,
9
+ "attention_dropout": 0.0,
10
+ "bos_token_id": 128000,
11
+ "eos_token_id": 128001,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 14336,
16
+ "max_position_embeddings": 65536,
17
+ "mlp_bias": false,
18
+ "model_type": "llama",
19
+ "num_attention_heads": 32,
20
+ "num_hidden_layers": 32,
21
+ "num_key_value_heads": 8,
22
+ "pretraining_tp": 1,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_scaling": {
25
+ "factor": 8.0,
26
+ "low_freq_factor": 1.0,
27
+ "high_freq_factor": 4.0,
28
+ "original_max_position_embeddings": 8192,
29
+ "rope_type": "llama3"
30
+ },
31
+ "rope_theta": 500000.0,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.43.0.dev0",
35
+ "use_cache": true,
36
+ "vocab_size": 128256
37
+ }
configuration.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"framework":"Pytorch","task":"text-generation"}
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_sample": true,
3
+ "temperature": 0.6,
4
+ "top_p": 0.9,
5
+ "_from_model_config": true,
6
+ "bos_token_id": 128000,
7
+ "eos_token_id": 128001,
8
+ "transformers_version": "4.43.0.dev0"
9
+ }
model-00000-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4318a4b3adec1cd2b69d61fa320a0f5b14b6a834653d04b2ef3510e1d4a9dd1
3
+ size 4362250408
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27d56255405bab4141c1495010a221b209c54689957cd6ac7a100daa512e2fae
3
+ size 4362250496
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c9f45eea397a90c7bd6b595992cbddd4a10a085198c7255999d09168e4a7846
3
+ size 4362250496
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be1d86232189cf9f2cc7acbd45b1c81a2cba63a85f227d9f35bacb180a1ccdc3
3
+ size 872450088
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72bee32007c883c02a4f3a2f7756d69f7ef4489763923c1ff7d044939b7091bc
3
+ size 2101354824
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16060522496
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00004-of-00005.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00000-of-00005.safetensors",
8
+ "model.layers.0.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
9
+ "model.layers.0.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
10
+ "model.layers.0.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
11
+ "model.layers.0.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
13
+ "model.layers.0.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
14
+ "model.layers.0.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
15
+ "model.layers.0.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
16
+ "model.layers.1.input_layernorm.weight": "model-00000-of-00005.safetensors",
17
+ "model.layers.1.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
18
+ "model.layers.1.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
19
+ "model.layers.1.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
20
+ "model.layers.1.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
24
+ "model.layers.1.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
25
+ "model.layers.2.input_layernorm.weight": "model-00000-of-00005.safetensors",
26
+ "model.layers.2.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
27
+ "model.layers.2.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
28
+ "model.layers.2.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
29
+ "model.layers.2.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
30
+ "model.layers.2.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
31
+ "model.layers.2.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
32
+ "model.layers.2.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
33
+ "model.layers.2.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
34
+ "model.layers.3.input_layernorm.weight": "model-00000-of-00005.safetensors",
35
+ "model.layers.3.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
36
+ "model.layers.3.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
37
+ "model.layers.3.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
38
+ "model.layers.3.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
39
+ "model.layers.3.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
40
+ "model.layers.3.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
41
+ "model.layers.3.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
42
+ "model.layers.3.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
43
+ "model.layers.4.input_layernorm.weight": "model-00000-of-00005.safetensors",
44
+ "model.layers.4.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
45
+ "model.layers.4.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
46
+ "model.layers.4.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
47
+ "model.layers.4.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
48
+ "model.layers.4.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
49
+ "model.layers.4.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
50
+ "model.layers.4.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
51
+ "model.layers.4.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
52
+ "model.layers.5.input_layernorm.weight": "model-00000-of-00005.safetensors",
53
+ "model.layers.5.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
54
+ "model.layers.5.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
55
+ "model.layers.5.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
56
+ "model.layers.5.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
57
+ "model.layers.5.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
58
+ "model.layers.5.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
59
+ "model.layers.5.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
60
+ "model.layers.5.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
61
+ "model.layers.6.input_layernorm.weight": "model-00000-of-00005.safetensors",
62
+ "model.layers.6.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
63
+ "model.layers.6.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
64
+ "model.layers.6.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
65
+ "model.layers.6.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
66
+ "model.layers.6.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
67
+ "model.layers.6.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
68
+ "model.layers.6.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
69
+ "model.layers.6.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
70
+ "model.layers.7.input_layernorm.weight": "model-00000-of-00005.safetensors",
71
+ "model.layers.7.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
72
+ "model.layers.7.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
73
+ "model.layers.7.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
74
+ "model.layers.7.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
75
+ "model.layers.7.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
76
+ "model.layers.7.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
77
+ "model.layers.7.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
78
+ "model.layers.7.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
79
+ "model.layers.8.input_layernorm.weight": "model-00000-of-00005.safetensors",
80
+ "model.layers.8.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
81
+ "model.layers.8.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
82
+ "model.layers.8.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
83
+ "model.layers.8.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
84
+ "model.layers.8.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
85
+ "model.layers.8.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
86
+ "model.layers.8.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
87
+ "model.layers.8.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
88
+ "model.layers.9.input_layernorm.weight": "model-00000-of-00005.safetensors",
89
+ "model.layers.9.self_attn.q_proj.weight": "model-00000-of-00005.safetensors",
90
+ "model.layers.9.self_attn.k_proj.weight": "model-00000-of-00005.safetensors",
91
+ "model.layers.9.self_attn.v_proj.weight": "model-00000-of-00005.safetensors",
92
+ "model.layers.9.self_attn.o_proj.weight": "model-00000-of-00005.safetensors",
93
+ "model.layers.9.post_attention_layernorm.weight": "model-00000-of-00005.safetensors",
94
+ "model.layers.9.mlp.gate_proj.weight": "model-00000-of-00005.safetensors",
95
+ "model.layers.9.mlp.up_proj.weight": "model-00000-of-00005.safetensors",
96
+ "model.layers.9.mlp.down_proj.weight": "model-00000-of-00005.safetensors",
97
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00005.safetensors",
98
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
99
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
100
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
101
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
102
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
103
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
104
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
105
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
106
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00005.safetensors",
107
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
108
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
109
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
110
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
111
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
112
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
113
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
114
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
115
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00005.safetensors",
116
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
117
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
118
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
119
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
120
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
121
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
122
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
123
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
124
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00005.safetensors",
125
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
126
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
127
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
128
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
129
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
130
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
131
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
132
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
133
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00005.safetensors",
134
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
135
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
136
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
137
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
138
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
139
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
140
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
141
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
142
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00005.safetensors",
143
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
144
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
145
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
146
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
147
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
148
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
149
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
150
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
151
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00005.safetensors",
152
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
153
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
154
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
155
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
156
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
157
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
158
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
159
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
160
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00005.safetensors",
161
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
162
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
163
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
164
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
165
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
166
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
167
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
168
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
169
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00005.safetensors",
170
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
171
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
172
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
173
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
174
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
175
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
176
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
177
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
178
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00005.safetensors",
179
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
180
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
181
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
182
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
183
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
184
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
185
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
186
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
187
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00005.safetensors",
188
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
189
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
190
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
191
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
192
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
193
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
194
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
195
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
196
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00005.safetensors",
197
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
198
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
199
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
200
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
201
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
202
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
203
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
204
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
205
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00005.safetensors",
206
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
207
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
208
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
209
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
210
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
211
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
212
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
213
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
214
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00005.safetensors",
215
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
216
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
217
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
218
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
219
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
220
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
221
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
222
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
223
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00005.safetensors",
224
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
225
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
226
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
227
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
228
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
229
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
230
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
231
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
232
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00005.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
234
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
236
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
237
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
238
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
239
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
240
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
241
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00005.safetensors",
242
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
243
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
244
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
245
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
246
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
247
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
248
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
249
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
250
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00005.safetensors",
251
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
252
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
253
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
254
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
255
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
256
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
257
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
258
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
259
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00005.safetensors",
260
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
261
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
262
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
263
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
265
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
266
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
267
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
268
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00005.safetensors",
269
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
270
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
271
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
272
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
273
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
276
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
277
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00005.safetensors",
278
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
279
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
280
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
281
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
282
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
283
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
284
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
285
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
286
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00005.safetensors",
287
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
288
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
289
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
290
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
291
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
292
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
293
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
294
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
295
+ "model.norm.weight": "model-00004-of-00005.safetensors",
296
+ "lm_head.weight": "model-00004-of-00005.safetensors"
297
+ }
298
+ }
modeling_llama.py ADDED
@@ -0,0 +1,1255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ import math
21
+ from typing import Optional, Tuple, Union, List, Callable, Dict, Any
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
31
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
32
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
33
+ from transformers.modeling_outputs import (
34
+ BaseModelOutputWithPast,
35
+ CausalLMOutputWithPast,
36
+ QuestionAnsweringModelOutput,
37
+ SequenceClassifierOutputWithPast,
38
+ TokenClassifierOutput,
39
+ )
40
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
41
+ from transformers.modeling_utils import PreTrainedModel
42
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
43
+ from transformers.utils import (
44
+ add_start_docstrings,
45
+ add_start_docstrings_to_model_forward,
46
+ is_flash_attn_greater_or_equal_2_10,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from transformers import LlamaConfig
51
+
52
+ logger = logging.get_logger(__name__)
53
+
54
+ _CONFIG_FOR_DOC = "LlamaConfig"
55
+
56
+
57
+ class LlamaRMSNorm(nn.Module):
58
+ def __init__(self, hidden_size, eps=1e-6):
59
+ """
60
+ LlamaRMSNorm is equivalent to T5LayerNorm
61
+ """
62
+ super().__init__()
63
+ self.weight = nn.Parameter(torch.ones(hidden_size))
64
+ self.variance_epsilon = eps
65
+
66
+ def forward(self, hidden_states):
67
+ input_dtype = hidden_states.dtype
68
+ hidden_states = hidden_states.to(torch.float32)
69
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
70
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
71
+ return self.weight * hidden_states.to(input_dtype)
72
+
73
+
74
+ ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
75
+
76
+
77
+ class LlamaRotaryEmbedding(nn.Module):
78
+ def __init__(
79
+ self,
80
+ dim=None,
81
+ max_position_embeddings=2048,
82
+ base=10000,
83
+ device=None,
84
+ scaling_factor=1.0,
85
+ rope_type="default",
86
+ config: Optional[LlamaConfig] = None,
87
+ ):
88
+ super().__init__()
89
+ # TODO (joao): remove the `if` below, only used for BC
90
+ self.rope_kwargs = {}
91
+ if config is None:
92
+ logger.warning_once(
93
+ "`LlamaRotaryEmbedding` can now be fully parameterized by passing the model config through the "
94
+ "`config` argument. All other arguments will be removed in v4.45"
95
+ )
96
+ self.rope_kwargs = {
97
+ "rope_type": rope_type,
98
+ "factor": scaling_factor,
99
+ "dim": dim,
100
+ "base": base,
101
+ "max_position_embeddings": max_position_embeddings,
102
+ }
103
+ self.rope_type = rope_type
104
+ self.max_seq_len_cached = max_position_embeddings
105
+ self.original_max_seq_len = max_position_embeddings
106
+ else:
107
+ # BC: "rope_type" was originally "type"
108
+ if config.rope_scaling is not None:
109
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
110
+ else:
111
+ self.rope_type = "default"
112
+ self.max_seq_len_cached = config.max_position_embeddings
113
+ self.original_max_seq_len = config.max_position_embeddings
114
+
115
+ self.config = config
116
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
117
+
118
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
119
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
120
+ self.original_inv_freq = self.inv_freq
121
+
122
+ def _dynamic_frequency_update(self, position_ids, device):
123
+ """
124
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
125
+ 1 - growing beyond the cached sequence length (allow scaling)
126
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
127
+ """
128
+ seq_len = torch.max(position_ids) + 1
129
+ if seq_len > self.max_seq_len_cached: # growth
130
+ inv_freq, self.attention_scaling = self.rope_init_fn(
131
+ self.config, device, seq_len=seq_len, **self.rope_kwargs
132
+ )
133
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
134
+ self.max_seq_len_cached = seq_len
135
+
136
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
137
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
138
+ self.max_seq_len_cached = self.original_max_seq_len
139
+
140
+ @torch.no_grad()
141
+ def forward(self, x, position_ids):
142
+ if "dynamic" in self.rope_type:
143
+ self._dynamic_frequency_update(position_ids, device=x.device)
144
+ # Core RoPE block
145
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
146
+ position_ids_expanded = position_ids[:, None, :].float()
147
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
148
+ device_type = x.device.type
149
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
150
+ with torch.autocast(device_type=device_type, enabled=False):
151
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
152
+ emb = torch.cat((freqs, freqs), dim=-1)
153
+ cos = emb.cos()
154
+ sin = emb.sin()
155
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
156
+ cos = cos * self.attention_scaling
157
+ sin = sin * self.attention_scaling
158
+
159
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
160
+
161
+
162
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
163
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
164
+
165
+ def __init__(self, *args, **kwargs):
166
+ logger.warning_once(
167
+ "`LlamaLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
168
+ "`LlamaRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
169
+ )
170
+ kwargs["rope_type"] = "linear"
171
+ super().__init__(*args, **kwargs)
172
+
173
+
174
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
175
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
176
+
177
+ def __init__(self, *args, **kwargs):
178
+ logger.warning_once(
179
+ "`LlamaDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
180
+ "`LlamaRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
181
+ "__init__)."
182
+ )
183
+ kwargs["rope_type"] = "dynamic"
184
+ super().__init__(*args, **kwargs)
185
+
186
+
187
+ def rotate_half(x):
188
+ """Rotates half the hidden dims of the input."""
189
+ x1 = x[..., : x.shape[-1] // 2]
190
+ x2 = x[..., x.shape[-1] // 2 :]
191
+ return torch.cat((-x2, x1), dim=-1)
192
+
193
+
194
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
195
+ """Applies Rotary Position Embedding to the query and key tensors.
196
+
197
+ Args:
198
+ q (`torch.Tensor`): The query tensor.
199
+ k (`torch.Tensor`): The key tensor.
200
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
201
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
202
+ position_ids (`torch.Tensor`, *optional*):
203
+ Deprecated and unused.
204
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
205
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
206
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
207
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
208
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
209
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
210
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
211
+ Returns:
212
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
213
+ """
214
+ cos = cos.unsqueeze(unsqueeze_dim)
215
+ sin = sin.unsqueeze(unsqueeze_dim)
216
+
217
+ q_embed = (q * cos) + (rotate_half(q) * sin)
218
+ k_embed = (k * cos) + (rotate_half(k) * sin)
219
+ return q_embed, k_embed
220
+
221
+
222
+ class LlamaMLP(nn.Module):
223
+ def __init__(self, config):
224
+ super().__init__()
225
+ self.config = config
226
+ self.hidden_size = config.hidden_size
227
+ self.intermediate_size = config.intermediate_size
228
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
229
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
230
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
231
+ self.act_fn = ACT2FN[config.hidden_act]
232
+
233
+ def forward(self, x):
234
+ if self.config.pretraining_tp > 1:
235
+ slice = self.intermediate_size // self.config.pretraining_tp
236
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
237
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
238
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
239
+
240
+ gate_proj = torch.cat(
241
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
242
+ )
243
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
244
+
245
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
246
+ down_proj = [
247
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
248
+ ]
249
+ down_proj = sum(down_proj)
250
+ else:
251
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
252
+
253
+ return down_proj
254
+
255
+
256
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
257
+ """
258
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
259
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
260
+ """
261
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
262
+ if n_rep == 1:
263
+ return hidden_states
264
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
265
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
266
+
267
+
268
+ class LlamaAttention(nn.Module):
269
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
270
+
271
+ def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
272
+ super().__init__()
273
+ self.config = config
274
+ self.layer_idx = layer_idx
275
+ if layer_idx is None:
276
+ logger.warning_once(
277
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
278
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
279
+ "when creating this class."
280
+ )
281
+
282
+ self.attention_dropout = config.attention_dropout
283
+ self.hidden_size = config.hidden_size
284
+ self.num_heads = config.num_attention_heads
285
+ self.head_dim = self.hidden_size // self.num_heads
286
+ self.num_key_value_heads = config.num_key_value_heads
287
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
288
+ self.max_position_embeddings = config.max_position_embeddings
289
+ self.rope_theta = config.rope_theta
290
+ self.is_causal = True
291
+
292
+ if (self.head_dim * self.num_heads) != self.hidden_size:
293
+ raise ValueError(
294
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
295
+ f" and `num_heads`: {self.num_heads})."
296
+ )
297
+
298
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
299
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
300
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
301
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
302
+
303
+ # TODO (joao): remove in v4.45 (RoPE is computed in the model, not in the decoder layers)
304
+ self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
305
+
306
+ def forward(
307
+ self,
308
+ hidden_states: torch.Tensor,
309
+ attention_mask: Optional[torch.Tensor] = None,
310
+ position_ids: Optional[torch.LongTensor] = None,
311
+ past_key_value: Optional[Cache] = None,
312
+ output_attentions: bool = False,
313
+ use_cache: bool = False,
314
+ cache_position: Optional[torch.LongTensor] = None,
315
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
316
+ **kwargs,
317
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
318
+ bsz, q_len, _ = hidden_states.size()
319
+
320
+ if self.config.pretraining_tp > 1:
321
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
322
+ query_slices = self.q_proj.weight.split(
323
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
324
+ )
325
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
326
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
327
+
328
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
329
+ query_states = torch.cat(query_states, dim=-1)
330
+
331
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
332
+ key_states = torch.cat(key_states, dim=-1)
333
+
334
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
335
+ value_states = torch.cat(value_states, dim=-1)
336
+
337
+ else:
338
+ query_states = self.q_proj(hidden_states)
339
+ key_states = self.k_proj(hidden_states)
340
+ value_states = self.v_proj(hidden_states)
341
+
342
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
343
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
344
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
345
+
346
+ if position_embeddings is None:
347
+ logger.warning_once(
348
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
349
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
350
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
351
+ "removed and `position_embeddings` will be mandatory."
352
+ )
353
+ cos, sin = self.rotary_emb(value_states, position_ids)
354
+ else:
355
+ cos, sin = position_embeddings
356
+
357
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
358
+
359
+ if past_key_value is not None:
360
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
361
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
362
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
363
+
364
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
365
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
366
+
367
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
368
+
369
+ if attention_mask is not None: # no matter the length, we just slice it
370
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
371
+ attn_weights = attn_weights + causal_mask
372
+
373
+ # upcast attention to fp32
374
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
375
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
376
+ attn_output = torch.matmul(attn_weights, value_states)
377
+
378
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
379
+ raise ValueError(
380
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
381
+ f" {attn_output.size()}"
382
+ )
383
+
384
+ attn_output = attn_output.transpose(1, 2).contiguous()
385
+
386
+ attn_output = attn_output.reshape(bsz, q_len, -1)
387
+
388
+ if self.config.pretraining_tp > 1:
389
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
390
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
391
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
392
+ else:
393
+ attn_output = self.o_proj(attn_output)
394
+
395
+ if not output_attentions:
396
+ attn_weights = None
397
+
398
+ return attn_output, attn_weights, past_key_value
399
+
400
+
401
+ class LlamaFlashAttention2(LlamaAttention):
402
+ """
403
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
404
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
405
+ flash attention and deal with padding tokens in case the input contains any of them.
406
+ """
407
+
408
+ def __init__(self, *args, **kwargs):
409
+ super().__init__(*args, **kwargs)
410
+
411
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
412
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
413
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
414
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
415
+
416
+ def forward(
417
+ self,
418
+ hidden_states: torch.Tensor,
419
+ attention_mask: Optional[torch.LongTensor] = None,
420
+ position_ids: Optional[torch.LongTensor] = None,
421
+ past_key_value: Optional[Cache] = None,
422
+ output_attentions: bool = False,
423
+ use_cache: bool = False,
424
+ cache_position: Optional[torch.LongTensor] = None,
425
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
426
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
427
+ if isinstance(past_key_value, StaticCache):
428
+ raise ValueError(
429
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
430
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
431
+ )
432
+
433
+ output_attentions = False
434
+
435
+ bsz, q_len, _ = hidden_states.size()
436
+
437
+ query_states = self.q_proj(hidden_states)
438
+ key_states = self.k_proj(hidden_states)
439
+ value_states = self.v_proj(hidden_states)
440
+
441
+ # Flash attention requires the input to have the shape
442
+ # batch_size x seq_length x head_dim x hidden_dim
443
+ # therefore we just need to keep the original shape
444
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
445
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
446
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
447
+
448
+ if position_embeddings is None:
449
+ logger.warning_once(
450
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
451
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
452
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
453
+ "removed and `position_embeddings` will be mandatory."
454
+ )
455
+ cos, sin = self.rotary_emb(value_states, position_ids)
456
+ else:
457
+ cos, sin = position_embeddings
458
+
459
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
460
+
461
+ if past_key_value is not None:
462
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
463
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
464
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
465
+
466
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
467
+ # to be able to avoid many of these transpose/reshape/view.
468
+ query_states = query_states.transpose(1, 2)
469
+ key_states = key_states.transpose(1, 2)
470
+ value_states = value_states.transpose(1, 2)
471
+
472
+ dropout_rate = self.attention_dropout if self.training else 0.0
473
+
474
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
475
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
476
+ # cast them back in the correct dtype just to be sure everything works as expected.
477
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
478
+ # in fp32. (LlamaRMSNorm handles it correctly)
479
+
480
+ input_dtype = query_states.dtype
481
+ if input_dtype == torch.float32:
482
+ if torch.is_autocast_enabled():
483
+ target_dtype = torch.get_autocast_gpu_dtype()
484
+ # Handle the case where the model is quantized
485
+ elif hasattr(self.config, "_pre_quantization_dtype"):
486
+ target_dtype = self.config._pre_quantization_dtype
487
+ else:
488
+ target_dtype = self.q_proj.weight.dtype
489
+
490
+ logger.warning_once(
491
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
492
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
493
+ f" {target_dtype}."
494
+ )
495
+
496
+ query_states = query_states.to(target_dtype)
497
+ key_states = key_states.to(target_dtype)
498
+ value_states = value_states.to(target_dtype)
499
+
500
+ attn_output = _flash_attention_forward(
501
+ query_states,
502
+ key_states,
503
+ value_states,
504
+ attention_mask,
505
+ q_len,
506
+ dropout=dropout_rate,
507
+ sliding_window=getattr(self, "sliding_window", None),
508
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
509
+ is_causal=self.is_causal,
510
+ )
511
+
512
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
513
+ attn_output = self.o_proj(attn_output)
514
+
515
+ if not output_attentions:
516
+ attn_weights = None
517
+
518
+ return attn_output, attn_weights, past_key_value
519
+
520
+
521
+ class LlamaSdpaAttention(LlamaAttention):
522
+ """
523
+ Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
524
+ `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
525
+ SDPA API.
526
+ """
527
+
528
+ # Adapted from LlamaAttention.forward
529
+ def forward(
530
+ self,
531
+ hidden_states: torch.Tensor,
532
+ attention_mask: Optional[torch.Tensor] = None,
533
+ position_ids: Optional[torch.LongTensor] = None,
534
+ past_key_value: Optional[Cache] = None,
535
+ output_attentions: bool = False,
536
+ use_cache: bool = False,
537
+ cache_position: Optional[torch.LongTensor] = None,
538
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
539
+ **kwargs,
540
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
541
+ if output_attentions:
542
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
543
+ logger.warning_once(
544
+ "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
545
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
546
+ )
547
+ return super().forward(
548
+ hidden_states=hidden_states,
549
+ attention_mask=attention_mask,
550
+ position_ids=position_ids,
551
+ past_key_value=past_key_value,
552
+ output_attentions=output_attentions,
553
+ use_cache=use_cache,
554
+ cache_position=cache_position,
555
+ position_embeddings=position_embeddings,
556
+ )
557
+
558
+ bsz, q_len, _ = hidden_states.size()
559
+ # print(hidden_states.sum())
560
+ query_states = self.q_proj(hidden_states)
561
+ key_states = self.k_proj(hidden_states)
562
+ value_states = self.v_proj(hidden_states)
563
+ # print(query_states.sum() + key_states.sum() + value_states.sum())
564
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
565
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
566
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
567
+
568
+ if position_embeddings is None:
569
+ logger.warning_once(
570
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
571
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
572
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
573
+ "removed and `position_embeddings` will be mandatory."
574
+ )
575
+ cos, sin = self.rotary_emb(value_states, position_ids)
576
+ else:
577
+ cos, sin = position_embeddings
578
+
579
+ # print(query_states.size(), key_states.size())
580
+ # print(query_states.sum(), key_states.sum(), value_states.sum())
581
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
582
+ # print(query_states.sum(), key_states.sum())
583
+ # exit()
584
+
585
+ if past_key_value is not None:
586
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
587
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
588
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
589
+
590
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
591
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
592
+
593
+ causal_mask = attention_mask
594
+ if attention_mask is not None:
595
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
596
+
597
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
598
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
599
+ if query_states.device.type == "cuda" and causal_mask is not None:
600
+ query_states = query_states.contiguous()
601
+ key_states = key_states.contiguous()
602
+ value_states = value_states.contiguous()
603
+
604
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
605
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
606
+ is_causal = True if causal_mask is None and q_len > 1 else False
607
+
608
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
609
+ query_states,
610
+ key_states,
611
+ value_states,
612
+ attn_mask=causal_mask,
613
+ dropout_p=self.attention_dropout if self.training else 0.0,
614
+ is_causal=is_causal,
615
+ )
616
+
617
+ attn_output = attn_output.transpose(1, 2).contiguous()
618
+ attn_output = attn_output.view(bsz, q_len, -1)
619
+
620
+ attn_output = self.o_proj(attn_output)
621
+
622
+ return attn_output, None, past_key_value
623
+
624
+
625
+ LLAMA_ATTENTION_CLASSES = {
626
+ "eager": LlamaAttention,
627
+ "flash_attention_2": LlamaFlashAttention2,
628
+ "sdpa": LlamaSdpaAttention,
629
+ }
630
+
631
+
632
+ class LlamaDecoderLayer(nn.Module):
633
+ def __init__(self, config: LlamaConfig, layer_idx: int):
634
+ super().__init__()
635
+ self.hidden_size = config.hidden_size
636
+
637
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
638
+ self.mlp = LlamaMLP(config)
639
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
640
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
641
+
642
+ def forward(
643
+ self,
644
+ hidden_states: torch.Tensor,
645
+ attention_mask: Optional[torch.Tensor] = None,
646
+ position_ids: Optional[torch.LongTensor] = None,
647
+ past_key_value: Optional[Cache] = None,
648
+ output_attentions: Optional[bool] = False,
649
+ use_cache: Optional[bool] = False,
650
+ cache_position: Optional[torch.LongTensor] = None,
651
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
652
+ **kwargs,
653
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
654
+ """
655
+ Args:
656
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
657
+ attention_mask (`torch.FloatTensor`, *optional*):
658
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
659
+ query_sequence_length, key_sequence_length)` if default attention is used.
660
+ output_attentions (`bool`, *optional*):
661
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
662
+ returned tensors for more detail.
663
+ use_cache (`bool`, *optional*):
664
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
665
+ (see `past_key_values`).
666
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
667
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
668
+ Indices depicting the position of the input sequence tokens in the sequence
669
+ position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
670
+ Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
671
+ with `head_dim` being the embedding dimension of each attention head.
672
+ kwargs (`dict`, *optional*):
673
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
674
+ into the model
675
+ """
676
+ residual = hidden_states
677
+ # print(hidden_states.float().sum())
678
+ hidden_states = self.input_layernorm(hidden_states)
679
+ # print(hidden_states.float().sum())
680
+
681
+ # Self Attention
682
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
683
+ hidden_states=hidden_states,
684
+ attention_mask=attention_mask,
685
+ position_ids=position_ids,
686
+ past_key_value=past_key_value,
687
+ output_attentions=output_attentions,
688
+ use_cache=use_cache,
689
+ cache_position=cache_position,
690
+ position_embeddings=position_embeddings,
691
+ **kwargs,
692
+ )
693
+ hidden_states = residual + hidden_states
694
+
695
+ # Fully Connected
696
+ residual = hidden_states
697
+ hidden_states = self.post_attention_layernorm(hidden_states)
698
+ hidden_states = self.mlp(hidden_states)
699
+ hidden_states = residual + hidden_states
700
+
701
+ outputs = (hidden_states,)
702
+
703
+ if output_attentions:
704
+ outputs += (self_attn_weights,)
705
+
706
+ if use_cache:
707
+ outputs += (present_key_value,)
708
+
709
+ return outputs
710
+
711
+
712
+ LLAMA_START_DOCSTRING = r"""
713
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
714
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
715
+ etc.)
716
+
717
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
718
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
719
+ and behavior.
720
+
721
+ Parameters:
722
+ config ([`LlamaConfig`]):
723
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
724
+ load the weights associated with the model, only the configuration. Check out the
725
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
726
+ """
727
+
728
+
729
+ @add_start_docstrings(
730
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
731
+ LLAMA_START_DOCSTRING,
732
+ )
733
+ class LlamaPreTrainedModel(PreTrainedModel):
734
+ config_class = LlamaConfig
735
+ base_model_prefix = "model"
736
+ supports_gradient_checkpointing = True
737
+ _no_split_modules = ["LlamaDecoderLayer"]
738
+ _skip_keys_device_placement = ["past_key_values"]
739
+ _supports_flash_attn_2 = True
740
+ _supports_sdpa = True
741
+ _supports_cache_class = True
742
+ _supports_quantized_cache = True
743
+ _supports_static_cache = True
744
+
745
+ def _init_weights(self, module):
746
+ std = self.config.initializer_range
747
+ if isinstance(module, nn.Linear):
748
+ module.weight.data.normal_(mean=0.0, std=std)
749
+ if module.bias is not None:
750
+ module.bias.data.zero_()
751
+ elif isinstance(module, nn.Embedding):
752
+ module.weight.data.normal_(mean=0.0, std=std)
753
+ if module.padding_idx is not None:
754
+ module.weight.data[module.padding_idx].zero_()
755
+
756
+
757
+ LLAMA_INPUTS_DOCSTRING = r"""
758
+ Args:
759
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
760
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
761
+ it.
762
+
763
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
764
+ [`PreTrainedTokenizer.__call__`] for details.
765
+
766
+ [What are input IDs?](../glossary#input-ids)
767
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
768
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
769
+
770
+ - 1 for tokens that are **not masked**,
771
+ - 0 for tokens that are **masked**.
772
+
773
+ [What are attention masks?](../glossary#attention-mask)
774
+
775
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
776
+ [`PreTrainedTokenizer.__call__`] for details.
777
+
778
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
779
+ `past_key_values`).
780
+
781
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
782
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
783
+ information on the default strategy.
784
+
785
+ - 1 indicates the head is **not masked**,
786
+ - 0 indicates the head is **masked**.
787
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
788
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
789
+ config.n_positions - 1]`.
790
+
791
+ [What are position IDs?](../glossary#position-ids)
792
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
793
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
794
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
795
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
796
+
797
+ Two formats are allowed:
798
+ - a [`~cache_utils.Cache`] instance;
799
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
800
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
801
+ cache format.
802
+
803
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
804
+ legacy cache format will be returned.
805
+
806
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
807
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
808
+ of shape `(batch_size, sequence_length)`.
809
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
810
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
811
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
812
+ model's internal embedding lookup matrix.
813
+ use_cache (`bool`, *optional*):
814
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
815
+ `past_key_values`).
816
+ output_attentions (`bool`, *optional*):
817
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
818
+ tensors for more detail.
819
+ output_hidden_states (`bool`, *optional*):
820
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
821
+ more detail.
822
+ return_dict (`bool`, *optional*):
823
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
824
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
825
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
826
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
827
+ the complete sequence length.
828
+ """
829
+
830
+
831
+ @add_start_docstrings(
832
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
833
+ LLAMA_START_DOCSTRING,
834
+ )
835
+ class LlamaModel(LlamaPreTrainedModel):
836
+ """
837
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
838
+
839
+ Args:
840
+ config: LlamaConfig
841
+ """
842
+
843
+ def __init__(self, config: LlamaConfig):
844
+ super().__init__(config)
845
+ self.padding_idx = config.pad_token_id
846
+ self.vocab_size = config.vocab_size
847
+
848
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
849
+ self.layers = nn.ModuleList(
850
+ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
851
+ )
852
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
853
+ self.rotary_emb = LlamaRotaryEmbedding(config=config)
854
+ self.gradient_checkpointing = False
855
+
856
+ # Initialize weights and apply final processing
857
+ self.post_init()
858
+
859
+ def get_input_embeddings(self):
860
+ return self.embed_tokens
861
+
862
+ def set_input_embeddings(self, value):
863
+ self.embed_tokens = value
864
+
865
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
866
+ def forward(
867
+ self,
868
+ input_ids: torch.LongTensor = None,
869
+ attention_mask: Optional[torch.Tensor] = None,
870
+ position_ids: Optional[torch.LongTensor] = None,
871
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
872
+ inputs_embeds: Optional[torch.FloatTensor] = None,
873
+ use_cache: Optional[bool] = None,
874
+ output_attentions: Optional[bool] = None,
875
+ output_hidden_states: Optional[bool] = None,
876
+ return_dict: Optional[bool] = None,
877
+ cache_position: Optional[torch.LongTensor] = None,
878
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
879
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
880
+ output_hidden_states = (
881
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
882
+ )
883
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
884
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
885
+
886
+ if (input_ids is None) ^ (inputs_embeds is not None):
887
+ raise ValueError(
888
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
889
+ )
890
+
891
+ if self.gradient_checkpointing and self.training and use_cache:
892
+ logger.warning_once(
893
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
894
+ )
895
+ use_cache = False
896
+
897
+ if inputs_embeds is None:
898
+ inputs_embeds = self.embed_tokens(input_ids)
899
+
900
+ return_legacy_cache = False
901
+ if (
902
+ use_cache and not isinstance(past_key_values, Cache) and not self.training
903
+ ): # kept for BC (non `Cache` `past_key_values` inputs)
904
+ return_legacy_cache = True
905
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
906
+ logger.warning_once(
907
+ "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
908
+ "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
909
+ )
910
+
911
+ if cache_position is None:
912
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
913
+ cache_position = torch.arange(
914
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
915
+ )
916
+ if position_ids is None:
917
+ position_ids = cache_position.unsqueeze(0)
918
+
919
+ causal_mask = self._update_causal_mask(
920
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
921
+ )
922
+ hidden_states = inputs_embeds
923
+
924
+ # create position embeddings to be shared across the decoder layers
925
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
926
+
927
+ # decoder layers
928
+ all_hidden_states = () if output_hidden_states else None
929
+ all_self_attns = () if output_attentions else None
930
+ next_decoder_cache = None
931
+
932
+ for decoder_layer in self.layers:
933
+ if output_hidden_states:
934
+ all_hidden_states += (hidden_states,)
935
+
936
+ if self.gradient_checkpointing and self.training:
937
+ layer_outputs = self._gradient_checkpointing_func(
938
+ decoder_layer.__call__,
939
+ hidden_states,
940
+ causal_mask,
941
+ position_ids,
942
+ past_key_values,
943
+ output_attentions,
944
+ use_cache,
945
+ cache_position,
946
+ position_embeddings,
947
+ )
948
+ else:
949
+ layer_outputs = decoder_layer(
950
+ hidden_states,
951
+ attention_mask=causal_mask,
952
+ position_ids=position_ids,
953
+ past_key_value=past_key_values,
954
+ output_attentions=output_attentions,
955
+ use_cache=use_cache,
956
+ cache_position=cache_position,
957
+ position_embeddings=position_embeddings,
958
+ )
959
+
960
+ hidden_states = layer_outputs[0]
961
+
962
+ if use_cache:
963
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
964
+
965
+ if output_attentions:
966
+ all_self_attns += (layer_outputs[1],)
967
+
968
+ hidden_states = self.norm(hidden_states)
969
+
970
+ # add hidden states from the last decoder layer
971
+ if output_hidden_states:
972
+ all_hidden_states += (hidden_states,)
973
+
974
+ next_cache = next_decoder_cache if use_cache else None
975
+ if return_legacy_cache:
976
+ next_cache = next_cache.to_legacy_cache()
977
+
978
+ if not return_dict:
979
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
980
+ return BaseModelOutputWithPast(
981
+ last_hidden_state=hidden_states,
982
+ past_key_values=next_cache,
983
+ hidden_states=all_hidden_states,
984
+ attentions=all_self_attns,
985
+ )
986
+
987
+ def _update_causal_mask(
988
+ self,
989
+ attention_mask: torch.Tensor,
990
+ input_tensor: torch.Tensor,
991
+ cache_position: torch.Tensor,
992
+ past_key_values: Cache,
993
+ output_attentions: bool,
994
+ ):
995
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
996
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
997
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
998
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
999
+
1000
+ if self.config._attn_implementation == "flash_attention_2":
1001
+ if attention_mask is not None and 0.0 in attention_mask:
1002
+ return attention_mask
1003
+ return None
1004
+
1005
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1006
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1007
+ # to infer the attention mask.
1008
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1009
+ using_static_cache = isinstance(past_key_values, StaticCache)
1010
+
1011
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1012
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1013
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1014
+ attention_mask,
1015
+ inputs_embeds=input_tensor,
1016
+ past_key_values_length=past_seen_tokens,
1017
+ is_training=self.training,
1018
+ ):
1019
+ return None
1020
+
1021
+ dtype, device = input_tensor.dtype, input_tensor.device
1022
+ min_dtype = torch.finfo(dtype).min
1023
+ sequence_length = input_tensor.shape[1]
1024
+ if using_static_cache:
1025
+ target_length = past_key_values.get_max_length()
1026
+ else:
1027
+ target_length = (
1028
+ attention_mask.shape[-1]
1029
+ if isinstance(attention_mask, torch.Tensor)
1030
+ else past_seen_tokens + sequence_length + 1
1031
+ )
1032
+
1033
+ if attention_mask is not None and attention_mask.dim() == 4:
1034
+ # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
1035
+ if attention_mask.max() != 0:
1036
+ raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
1037
+ causal_mask = attention_mask
1038
+ else:
1039
+ causal_mask = torch.full(
1040
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
1041
+ )
1042
+ if sequence_length != 1:
1043
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1044
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1045
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
1046
+ if attention_mask is not None:
1047
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1048
+ mask_length = attention_mask.shape[-1]
1049
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
1050
+ padding_mask = padding_mask == 0
1051
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
1052
+ padding_mask, min_dtype
1053
+ )
1054
+ if (
1055
+ self.config._attn_implementation == "sdpa"
1056
+ and attention_mask is not None
1057
+ and attention_mask.device.type == "cuda"
1058
+ and not output_attentions
1059
+ ):
1060
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1061
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1062
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1063
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1064
+
1065
+ return causal_mask
1066
+
1067
+
1068
+ class LlamaForCausalLM(LlamaPreTrainedModel):
1069
+ _tied_weights_keys = ["lm_head.weight"]
1070
+
1071
+ def __init__(self, config):
1072
+ super().__init__(config)
1073
+ self.model = LlamaModel(config)
1074
+ self.vocab_size = config.vocab_size
1075
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1076
+
1077
+ # Initialize weights and apply final processing
1078
+ self.post_init()
1079
+
1080
+ def get_input_embeddings(self):
1081
+ return self.model.embed_tokens
1082
+
1083
+ def set_input_embeddings(self, value):
1084
+ self.model.embed_tokens = value
1085
+
1086
+ def get_output_embeddings(self):
1087
+ return self.lm_head
1088
+
1089
+ def set_output_embeddings(self, new_embeddings):
1090
+ self.lm_head = new_embeddings
1091
+
1092
+ def set_decoder(self, decoder):
1093
+ self.model = decoder
1094
+
1095
+ def get_decoder(self):
1096
+ return self.model
1097
+
1098
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1099
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1100
+ def forward(
1101
+ self,
1102
+ input_ids: torch.LongTensor = None,
1103
+ attention_mask: Optional[torch.Tensor] = None,
1104
+ position_ids: Optional[torch.LongTensor] = None,
1105
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1106
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1107
+ labels: Optional[torch.LongTensor] = None,
1108
+ use_cache: Optional[bool] = None,
1109
+ output_attentions: Optional[bool] = None,
1110
+ output_hidden_states: Optional[bool] = None,
1111
+ return_dict: Optional[bool] = None,
1112
+ cache_position: Optional[torch.LongTensor] = None,
1113
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1114
+ r"""
1115
+ Args:
1116
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1117
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1118
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1119
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1120
+
1121
+ Returns:
1122
+
1123
+ Example:
1124
+
1125
+ ```python
1126
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1127
+
1128
+ >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
1129
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
1130
+
1131
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1132
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1133
+
1134
+ >>> # Generate
1135
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1136
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1137
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1138
+ ```"""
1139
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1140
+ output_hidden_states = (
1141
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1142
+ )
1143
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1144
+
1145
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1146
+ outputs = self.model(
1147
+ input_ids=input_ids,
1148
+ attention_mask=attention_mask,
1149
+ position_ids=position_ids,
1150
+ past_key_values=past_key_values,
1151
+ inputs_embeds=inputs_embeds,
1152
+ use_cache=use_cache,
1153
+ output_attentions=output_attentions,
1154
+ output_hidden_states=output_hidden_states,
1155
+ return_dict=return_dict,
1156
+ cache_position=cache_position,
1157
+ )
1158
+
1159
+ hidden_states = outputs[0]
1160
+ if self.config.pretraining_tp > 1:
1161
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1162
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1163
+ logits = torch.cat(logits, dim=-1)
1164
+ else:
1165
+ logits = self.lm_head(hidden_states)
1166
+ logits = logits.float()
1167
+
1168
+ loss = None
1169
+ if labels is not None:
1170
+ # Shift so that tokens < n predict n
1171
+ shift_logits = logits[..., :-1, :].contiguous()
1172
+ shift_labels = labels[..., 1:].contiguous()
1173
+ # Flatten the tokens
1174
+ loss_fct = CrossEntropyLoss()
1175
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1176
+ shift_labels = shift_labels.view(-1)
1177
+ # Enable model parallelism
1178
+ shift_labels = shift_labels.to(shift_logits.device)
1179
+ loss = loss_fct(shift_logits, shift_labels)
1180
+
1181
+ if not return_dict:
1182
+ output = (logits,) + outputs[1:]
1183
+ return (loss,) + output if loss is not None else output
1184
+
1185
+ return CausalLMOutputWithPast(
1186
+ loss=loss,
1187
+ logits=logits,
1188
+ past_key_values=outputs.past_key_values,
1189
+ hidden_states=outputs.hidden_states,
1190
+ attentions=outputs.attentions,
1191
+ )
1192
+
1193
+ def prepare_inputs_for_generation(
1194
+ self,
1195
+ input_ids,
1196
+ past_key_values=None,
1197
+ attention_mask=None,
1198
+ inputs_embeds=None,
1199
+ cache_position=None,
1200
+ position_ids=None,
1201
+ use_cache=True,
1202
+ **kwargs,
1203
+ ):
1204
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
1205
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
1206
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
1207
+ if past_key_values is not None:
1208
+ if inputs_embeds is not None: # Exception 1
1209
+ input_ids = input_ids[:, -cache_position.shape[0] :]
1210
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
1211
+ input_ids = input_ids[:, cache_position]
1212
+
1213
+ if attention_mask is not None and position_ids is None:
1214
+ # create position_ids on the fly for batch generation
1215
+ position_ids = attention_mask.long().cumsum(-1) - 1
1216
+ position_ids.masked_fill_(attention_mask == 0, 1)
1217
+ if past_key_values:
1218
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1219
+
1220
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1221
+ if inputs_embeds is not None and cache_position[0] == 0:
1222
+ model_inputs = {"inputs_embeds": inputs_embeds}
1223
+ else:
1224
+ model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
1225
+
1226
+ model_inputs.update(
1227
+ {
1228
+ "position_ids": position_ids,
1229
+ "cache_position": cache_position,
1230
+ "past_key_values": past_key_values,
1231
+ "use_cache": use_cache,
1232
+ "attention_mask": attention_mask,
1233
+ }
1234
+ )
1235
+ return model_inputs
1236
+
1237
+ @torch.inference_mode()
1238
+ def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
1239
+ max_length: int = 65536, num_beams=1, do_sample=True, top_p=0.7, temperature=0.95,
1240
+ **kwargs):
1241
+ if history is None:
1242
+ history = []
1243
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1244
+ "temperature": temperature, **kwargs}
1245
+ inputs = tokenizer.build_chat_input(query, history=history, role=role)
1246
+ del inputs['token_type_ids']
1247
+ # print(inputs)
1248
+ inputs = inputs.to(self.device)
1249
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
1250
+ tokenizer.get_command("<|observation|>")]
1251
+ outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
1252
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
1253
+ response = tokenizer.decode(outputs).strip()
1254
+ history.append({"role": role, "content": query})
1255
+ return response, history
tiktoken_tokenizer.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import regex as re
2
+ import base64
3
+ import tiktoken
4
+ import os
5
+ import json
6
+ from transformers import PreTrainedTokenizer
7
+
8
+ class BaseTokenizer(PreTrainedTokenizer):
9
+ """Abstract class for tokenizer."""
10
+
11
+ def __init__(self, **kwargs):
12
+ super().__init__()
13
+
14
+ @property
15
+ def add_prefix_space(self):
16
+ return False
17
+
18
+ @property
19
+ def vocab_size(self):
20
+ raise NotImplemented
21
+
22
+ def tokenize(self, text):
23
+ raise NotImplemented
24
+
25
+ def detokenize(self, token_ids, ignore_special_tokens=True):
26
+ raise NotImplemented
27
+
28
+ def build_single_message(self, role, metadata, message):
29
+ assert role in ["system", "user", "assistant", "observation"], role
30
+ role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
31
+ message_tokens = self.tokenizer.encode(message, disallowed_special=())
32
+ tokens = role_tokens + message_tokens
33
+ return tokens
34
+
35
+ def build_chat_input(self, query, history=None, role="user", metadata=""):
36
+ if history is None:
37
+ history = []
38
+ input_ids = []
39
+ for item in history:
40
+ content = item["content"]
41
+ if item["role"] == "system" and "tools" in item:
42
+ content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
43
+ input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
44
+ input_ids.extend(self.build_single_message(role, metadata, query))
45
+ input_ids.extend([self.get_command("<|assistant|>")])
46
+ return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
47
+
48
+ @property
49
+ def eos_id(self):
50
+ raise NotImplemented
51
+
52
+ def get_command(self, token):
53
+ return NotImplemented
54
+
55
+ class TikTokenizer(BaseTokenizer):
56
+ vocab_files_names = {"vocab_file": "tokenizer.tiktoken"}
57
+
58
+ def __init__(self, vocab_file, **kwargs):
59
+ pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
60
+ self.pat_str = re.compile(pat_str)
61
+
62
+ self.b64_vocab = {}
63
+ mergeable_ranks = {}
64
+ with open(vocab_file) as f:
65
+ for line in f:
66
+ token, rank = line.strip().split()
67
+ rank = int(rank)
68
+ token = base64.b64decode(token)
69
+ mergeable_ranks[token] = rank
70
+ self.b64_vocab['%s' % token] = rank
71
+
72
+ self.special_tokens = ["<|endoftext|>", "[MASK]", "[gMASK]", "[sMASK]", "<sop>", "<eop>", "<|system|>",
73
+ "<|user|>", "<|assistant|>", "<|observation|>"]
74
+ self.special_tokens = {
75
+ token: idx for idx, token in enumerate(self.special_tokens, start=len(mergeable_ranks))
76
+ }
77
+ self.special_token_ids = {idx: token for token, idx in self.special_tokens.items()}
78
+
79
+ self.tokenizer = tiktoken.Encoding(
80
+ name="my_tokenizer",
81
+ pat_str=pat_str,
82
+ mergeable_ranks=mergeable_ranks,
83
+ special_tokens=self.special_tokens
84
+ )
85
+ self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
86
+ self.n_words = len(self.decoder) + len(self.special_tokens)
87
+ super().__init__()
88
+
89
+ @property
90
+ def add_prefix_space(self):
91
+ return False
92
+
93
+ def tokenize(self, text, add_special_tokens=True):
94
+ ids = self.encode(text, add_special_tokens=add_special_tokens)
95
+ return [self.convert_id_to_token(_id) for _id in ids]
96
+
97
+ def detokenize(self, ids, ignore_special_tokens=True):
98
+ if ignore_special_tokens:
99
+ ids = [idx for idx in ids if idx not in self.special_token_ids]
100
+ return self.tokenizer.decode(ids)
101
+
102
+ def encode(self, text, add_special_tokens=True):
103
+ ids = self.tokenizer.encode(text, disallowed_special=(), allowed_special="all")
104
+ if add_special_tokens:
105
+ ids = [self.special_tokens["[gMASK]"], self.special_tokens["<sop>"]] + ids
106
+ return ids
107
+
108
+ def decode(self, ids, skip_special_tokens=False, clean_up_tokenization_spaces=False):
109
+ if type(ids) is int:
110
+ ids = [ids]
111
+ return self.detokenize(ids, ignore_special_tokens=skip_special_tokens)
112
+
113
+ def encode_pieces(self, text):
114
+ ids = self.tokenizer.encode(text, disallowed_special=())
115
+ return list(map(lambda x: self.decoder[x].detokenize('utf-8', errors='replace'), ids))
116
+
117
+ @property
118
+ def vocab_size(self):
119
+ return self.n_words
120
+
121
+ @property
122
+ def eos_token_id(self):
123
+ return self.special_tokens["<|endoftext|>"]
124
+
125
+ def convert_token_to_id(self, token):
126
+ """ Converts a token (str) in an id using the vocab. """
127
+ if token in self.special_tokens:
128
+ return self.special_tokens[token]
129
+ # assert type(token) == str, "type of token (%s) is %s" % (token, type(token))
130
+ # ids = self.tokenizer.encode(token, disallowed_special=())
131
+ if token in self.b64_vocab:
132
+ return self.b64_vocab[token]
133
+ # if len(ids) == 1:
134
+ # return ids[0]
135
+ else:
136
+ raise RuntimeError(f"{token} is not a single token")
137
+
138
+ def _convert_token_to_id(self, token):
139
+ return self.convert_token_to_id(token)
140
+
141
+ def convert_id_to_token(self, index):
142
+ if index in self.special_token_ids:
143
+ return self.special_token_ids[index]
144
+ return '%s' % self.decoder[index]
145
+ # try:
146
+ # return self.decoder[index].decode('utf-8')
147
+ # except Exception as e:
148
+ # print("Exception: %s for (%d)%s" % (e, index, self.decoder[index]))
149
+ # return ""
150
+ #return self.decoder[index].detokenize('utf-8', errors='replace')
151
+
152
+ def _convert_id_to_token(self, index):
153
+ return self.convert_id_to_token(index)
154
+
155
+ def get_command(self, token):
156
+ return self.special_tokens[token]
157
+
158
+ def get_vocab(self):
159
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
160
+ return vocab
tokenizer.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name_or_path": "THUDM/chatglm4-130b",
3
+ "remove_space": false,
4
+ "do_lower_case": false,
5
+ "tokenizer_class": "TikTokenizer",
6
+ "auto_map": {
7
+ "AutoTokenizer": [
8
+ null,
9
+ "tiktoken_tokenizer.TikTokenizer"
10
+ ]
11
+ }
12
+ }