MistralCat-1v / README.md
TESTtm7873's picture
Update README.md
f570089 verified
metadata
library_name: peft
base_model: mistralai/Mistral-7B-Instruct-v0.2
license: mit
datasets:
  - TESTtm7873/ChatCat
language:
  - en

Model Card: Model ID

License

MIT License

Languages Supported

  • English (en)

Overview

This model is part of the VCC project and has been fine-tuned on the TESTtm7873/ChatCat dataset using the mistralai/Mistral-7B-Instruct-v0.2 as the base model. The fine-tuning process utilized QLoRA for improved performance.


Getting Started

To use this model, you'll need to set up your environment first:

Model initialization

from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
model = AutoModelForCausalLM.from_pretrained(
    "mistralai/Mistral-7B-Instruct-v0.2",
    load_in_8bit=True,
    device_map="auto",
)
model = PeftModel.from_pretrained(model, "TESTtm7873/MistralCat-1v")
model.eval()

Inference

def evaluate(question: str) -> str:
    prompt = f"The conversation between human and Virtual Cat Companion.\n[|Human|] {question}.\n[|AI|] "
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].cuda()
    generation_output = model.generate(
        input_ids=input_ids,
        generation_config=generation_config,
        return_dict_in_generate=True,
        output_scores=True,
        max_new_tokens=256
    )
    output = tokenizer.decode(generation_output.sequences[0]).split("[|AI|]")[1]
    return output
your_question: str = "You have the softest fur."
print(evaluate(your_question))
  • Developed by: testtm
  • Funded by: Project TEST
  • Model type: Mistral
  • Language: English
  • Finetuned from model: mistralai/Mistral-7B-Instruct-v0.2