|
--- |
|
license: mit |
|
base_model: microsoft/layoutlm-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- layoutlmv4 |
|
model-index: |
|
- name: Layoutlm_invoices |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Layoutlm_invoices |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the layoutlmv4 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0603 |
|
- Customer Address: {'precision': 0.7692307692307693, 'recall': 0.9090909090909091, 'f1': 0.8333333333333333, 'number': 11} |
|
- Customer Name: {'precision': 0.8333333333333334, 'recall': 0.9090909090909091, 'f1': 0.8695652173913043, 'number': 11} |
|
- Invoice Number: {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} |
|
- Tax Amount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} |
|
- Total Amount: {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11} |
|
- Vendor Name: {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} |
|
- Overall Precision: 0.8986 |
|
- Overall Recall: 0.9394 |
|
- Overall F1: 0.9185 |
|
- Overall Accuracy: 0.9831 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 6 |
|
- eval_batch_size: 3 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Customer Address | Customer Name | Invoice Number | Tax Amount | Total Amount | Vendor Name | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| |
|
| 0.0714 | 1.25 | 10 | 0.0752 | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} | {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} | {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} | 0.9403 | 0.9545 | 0.9474 | 0.9864 | |
|
| 0.0572 | 2.5 | 20 | 0.0603 | {'precision': 0.7692307692307693, 'recall': 0.9090909090909091, 'f1': 0.8333333333333333, 'number': 11} | {'precision': 0.8333333333333334, 'recall': 0.9090909090909091, 'f1': 0.8695652173913043, 'number': 11} | {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} | 0.8986 | 0.9394 | 0.9185 | 0.9831 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.1 |
|
- Pytorch 2.2.0+cpu |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.2 |
|
|