Layoutlm_invoices / README.md
Szczotar93's picture
End of training
06e5c68 verified
|
raw
history blame
4.67 kB
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- layoutlmv4
model-index:
- name: Layoutlm_invoices
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Layoutlm_invoices
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the layoutlmv4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0603
- Customer Address: {'precision': 0.7692307692307693, 'recall': 0.9090909090909091, 'f1': 0.8333333333333333, 'number': 11}
- Customer Name: {'precision': 0.8333333333333334, 'recall': 0.9090909090909091, 'f1': 0.8695652173913043, 'number': 11}
- Invoice Number: {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11}
- Tax Amount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}
- Total Amount: {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11}
- Vendor Name: {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11}
- Overall Precision: 0.8986
- Overall Recall: 0.9394
- Overall F1: 0.9185
- Overall Accuracy: 0.9831
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 6
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Customer Address | Customer Name | Invoice Number | Tax Amount | Total Amount | Vendor Name | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.0714 | 1.25 | 10 | 0.0752 | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} | {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} | {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} | 0.9403 | 0.9545 | 0.9474 | 0.9864 |
| 0.0572 | 2.5 | 20 | 0.0603 | {'precision': 0.7692307692307693, 'recall': 0.9090909090909091, 'f1': 0.8333333333333333, 'number': 11} | {'precision': 0.8333333333333334, 'recall': 0.9090909090909091, 'f1': 0.8695652173913043, 'number': 11} | {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} | 0.8986 | 0.9394 | 0.9185 | 0.9831 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.2.0+cpu
- Datasets 2.12.0
- Tokenizers 0.13.2