Syed-Hasan-8503 commited on
Commit
cd2e519
·
verified ·
1 Parent(s): 374905b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -2
README.md CHANGED
@@ -10,7 +10,12 @@ datasets:
10
  Phi-2-ORPO is a finetuned version of **[microsoft/phi-2](https://huggingface.co/microsoft/phi-2)** on **[argilla/dpo-mix-7k](https://huggingface.co/datasets/argilla/dpo-mix-7k)**
11
  preference dataset using **Odds Ratio Preference Optimization (ORPO)**.
12
 
13
- # What is ORPO?
 
 
 
 
 
14
 
15
  Odds Ratio Preference Optimization (ORPO) proposes a new method to train LLMs by combining SFT and Alignment into a new objective (loss function), achieving state of the art results.
16
  Some highlights of this techniques are:
@@ -21,7 +26,26 @@ Some highlights of this techniques are:
21
  📊 Mistral ORPO achieves 12.20% on AlpacaEval2.0, 66.19% on IFEval, and 7.32 on MT-Bench out Hugging Face Zephyr Beta
22
 
23
 
24
- #### Training Hyperparameters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
 
27
  ## Evaluation
 
10
  Phi-2-ORPO is a finetuned version of **[microsoft/phi-2](https://huggingface.co/microsoft/phi-2)** on **[argilla/dpo-mix-7k](https://huggingface.co/datasets/argilla/dpo-mix-7k)**
11
  preference dataset using **Odds Ratio Preference Optimization (ORPO)**.
12
 
13
+ ## LazyORPO
14
+
15
+ This model has been trained using **[LazyORPO](https://colab.research.google.com/drive/19ci5XIcJDxDVPY2xC1ftZ5z1kc2ah_rx?usp=sharing)**. A colab notebook that makes the training
16
+ process much easier. Based on [ORPO paper](https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fhuggingface.co%2Fpapers%2F2403.07691)
17
+
18
+ #### What is ORPO?
19
 
20
  Odds Ratio Preference Optimization (ORPO) proposes a new method to train LLMs by combining SFT and Alignment into a new objective (loss function), achieving state of the art results.
21
  Some highlights of this techniques are:
 
26
  📊 Mistral ORPO achieves 12.20% on AlpacaEval2.0, 66.19% on IFEval, and 7.32 on MT-Bench out Hugging Face Zephyr Beta
27
 
28
 
29
+ #### Usage
30
+
31
+ ```python
32
+ import torch
33
+ from transformers import AutoModelForCausalLM, AutoTokenizer
34
+
35
+ torch.set_default_device("cuda")
36
+
37
+ model = AutoModelForCausalLM.from_pretrained("abideen/phi2-pro", torch_dtype="auto", trust_remote_code=True)
38
+ tokenizer = AutoTokenizer.from_pretrained("abideen/phi2-pro", trust_remote_code=True)
39
+
40
+ inputs = tokenizer('''def print_prime(n):
41
+ """
42
+ Print all primes between 1 and n
43
+ """''', return_tensors="pt", return_attention_mask=False)
44
+
45
+ outputs = model.generate(**inputs, max_length=200)
46
+ text = tokenizer.batch_decode(outputs)[0]
47
+ print(text)
48
+ ```
49
 
50
 
51
  ## Evaluation