|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: Regression_xlnet_NOaug_MSEloss |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Regression_xlnet_NOaug_MSEloss |
|
|
|
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6460 |
|
- Mse: 0.6460 |
|
- Mae: 0.7041 |
|
- R2: -0.1893 |
|
- Accuracy: 0.2632 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-12 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:--------:| |
|
| No log | 1.0 | 33 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 | |
|
| No log | 2.0 | 66 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 | |
|
| No log | 3.0 | 99 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 | |
|
| No log | 4.0 | 132 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 | |
|
| No log | 5.0 | 165 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 | |
|
| No log | 6.0 | 198 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 | |
|
| No log | 7.0 | 231 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 | |
|
| No log | 8.0 | 264 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 | |
|
| No log | 9.0 | 297 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 | |
|
| No log | 10.0 | 330 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 | |
|
| No log | 11.0 | 363 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 | |
|
| No log | 12.0 | 396 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 | |
|
| No log | 13.0 | 429 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 | |
|
| No log | 14.0 | 462 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 | |
|
| No log | 15.0 | 495 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|