|
--- |
|
base_model: |
|
- SvalTek/L3-ColdBrew-Astrid |
|
- FPHam/L3-8B-Everything-COT |
|
- FPHam/L3-8B-Everything-COT |
|
- FPHam/L3-8B-Everything-COT |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- SvalTek/L3-ColdBrew-Astrid |
|
- FPHam/L3-8B-Everything-COT |
|
--- |
|
|
|
# L3-ColdBrew-Arcadia |
|
|
|
L3-ColdBrew-Arcadia is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [SvalTek/L3-ColdBrew-Astrid](https://huggingface.co/SvalTek/L3-ColdBrew-Astrid) |
|
* [FPHam/L3-8B-Everything-COT](https://huggingface.co/FPHam/L3-8B-Everything-COT) |
|
* [FPHam/L3-8B-Everything-COT](https://huggingface.co/FPHam/L3-8B-Everything-COT) |
|
* [FPHam/L3-8B-Everything-COT](https://huggingface.co/FPHam/L3-8B-Everything-COT) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
merge_method: passthrough |
|
slices: |
|
# Lower Layers (0–11): ColdBrew’s foundation |
|
- sources: |
|
- layer_range: [0, 12] |
|
model: SvalTek/L3-ColdBrew-Astrid |
|
|
|
# Reasoning Layers (12–23): Use FPHam for logical depth |
|
- sources: |
|
- layer_range: [12, 24] |
|
model: FPHam/L3-8B-Everything-COT |
|
|
|
# Reflection Layers (24–31): Use FPHam for reasoning and reflection |
|
- sources: |
|
- layer_range: [24, 32] |
|
model: FPHam/L3-8B-Everything-COT |
|
|
|
# Duplicate Layers (24–31): Add valid parameter growth |
|
- sources: |
|
- layer_range: [24, 32] # First duplicate |
|
model: FPHam/L3-8B-Everything-COT |
|
- layer_range: [24, 32] # Second duplicate |
|
model: FPHam/L3-8B-Everything-COT |
|
|
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "SvalTek/L3-ColdBrew-Arcadia" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |