|
# YOLOv9 |
|
|
|
Implementation of paper - [YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616) |
|
|
|
[](https://huggingface.co/spaces/kadirnar/Yolov9) |
|
[](https://huggingface.co/merve/yolov9) |
|
[](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov9-object-detection-on-custom-dataset.ipynb) |
|
[](https://arxiv.org/abs/2402.13616) |
|
|
|
<div align="center"> |
|
<a href="./"> |
|
<img src="./figure/performance.png" width="79%"/> |
|
</a> |
|
</div> |
|
|
|
|
|
## Performance |
|
|
|
MS COCO |
|
|
|
| Model | Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> | Param. | FLOPs | |
|
| :-- | :-: | :-: | :-: | :-: | :-: | :-: | |
|
| [**YOLOv9-S**]() | 640 | **46.8%** | **63.4%** | **50.7%** | **7.1M** | **26.4G** | |
|
| [**YOLOv9-M**]() | 640 | **51.4%** | **68.1%** | **56.1%** | **20.0M** | **76.3G** | |
|
| [**YOLOv9-C**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt) | 640 | **53.0%** | **70.2%** | **57.8%** | **25.3M** | **102.1G** | |
|
| [**YOLOv9-E**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt) | 640 | **55.6%** | **72.8%** | **60.6%** | **57.3M** | **189.0G** | |
|
|
|
<!-- small and medium models will be released after the paper be accepted and published. --> |
|
|
|
## Useful Links |
|
|
|
<details><summary> <b>Expand</b> </summary> |
|
|
|
Custom training: https://github.com/WongKinYiu/yolov9/issues/30#issuecomment-1960955297 |
|
|
|
ONNX export: https://github.com/WongKinYiu/yolov9/issues/2#issuecomment-1960519506 https://github.com/WongKinYiu/yolov9/issues/40#issue-2150697688 |
|
|
|
TensorRT inference: https://github.com/WongKinYiu/yolov9/issues/34#issue-2150393690 https://github.com/WongKinYiu/yolov9/issues/79#issue-2153547004 |
|
|
|
Hugging Face demo: https://github.com/WongKinYiu/yolov9/issues/45#issuecomment-1961496943 |
|
|
|
CoLab demo: https://github.com/WongKinYiu/yolov9/pull/18 |
|
|
|
ONNXSlim export: https://github.com/WongKinYiu/yolov9/pull/37 |
|
|
|
YOLOv9 ByteTrack: https://github.com/WongKinYiu/yolov9/issues/78#issue-2153512879 |
|
|
|
YOLOv9 counting: https://github.com/WongKinYiu/yolov9/issues/84#issue-2153904804 |
|
|
|
AnyLabeling tool: https://github.com/WongKinYiu/yolov9/issues/48#issue-2152139662 |
|
|
|
</details> |
|
|
|
|
|
## Installation |
|
|
|
Docker environment (recommended) |
|
<details><summary> <b>Expand</b> </summary> |
|
|
|
``` shell |
|
# create the docker container, you can change the share memory size if you have more. |
|
nvidia-docker run --name yolov9 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov9 --shm-size=64g nvcr.io/nvidia/pytorch:21.11-py3 |
|
|
|
# apt install required packages |
|
apt update |
|
apt install -y zip htop screen libgl1-mesa-glx |
|
|
|
# pip install required packages |
|
pip install seaborn thop |
|
|
|
# go to code folder |
|
cd /yolov9 |
|
``` |
|
|
|
</details> |
|
|
|
|
|
## Evaluation |
|
|
|
[`yolov9-c-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) [`yolov9-e-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) [`yolov9-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt) [`yolov9-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt) [`gelan-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c.pt) [`gelan-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-e.pt) |
|
|
|
``` shell |
|
# evaluate converted yolov9 models |
|
python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c-converted.pt' --save-json --name yolov9_c_c_640_val |
|
|
|
# evaluate yolov9 models |
|
#python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c.pt' --save-json --name yolov9_c_640_val |
|
|
|
# evaluate gelan models |
|
# python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './gelan-c.pt' --save-json --name gelan_c_640_val |
|
``` |
|
|
|
You will get the results: |
|
|
|
``` |
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.530 |
|
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.702 |
|
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.578 |
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.362 |
|
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.585 |
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.693 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.392 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.652 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.702 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.541 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.760 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.844 |
|
``` |
|
|
|
|
|
## Training |
|
|
|
Data preparation |
|
|
|
``` shell |
|
bash scripts/get_coco.sh |
|
``` |
|
|
|
* Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strongly recommend that you delete `train2017.cache` and `val2017.cache` files, and redownload [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip) |
|
|
|
Single GPU training |
|
|
|
``` shell |
|
# train yolov9 models |
|
python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 |
|
|
|
# train gelan models |
|
# python train.py --workers 8 --device 0 --batch 32 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 |
|
``` |
|
|
|
Multiple GPU training |
|
|
|
``` shell |
|
# train yolov9 models |
|
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_dual.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 |
|
|
|
# train gelan models |
|
# python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 |
|
``` |
|
|
|
|
|
## Re-parameterization |
|
|
|
See [reparameterization.ipynb](https://github.com/WongKinYiu/yolov9/blob/main/tools/reparameterization.ipynb). |
|
|
|
|
|
## Citation |
|
|
|
``` |
|
@article{wang2024yolov9, |
|
title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information}, |
|
author={Wang, Chien-Yao and Liao, Hong-Yuan Mark}, |
|
booktitle={arXiv preprint arXiv:2402.13616}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
``` |
|
@article{chang2023yolor, |
|
title={{YOLOR}-Based Multi-Task Learning}, |
|
author={Chang, Hung-Shuo and Wang, Chien-Yao and Wang, Richard Robert and Chou, Gene and Liao, Hong-Yuan Mark}, |
|
journal={arXiv preprint arXiv:2309.16921}, |
|
year={2023} |
|
} |
|
``` |
|
|
|
|
|
## Teaser |
|
|
|
Parts of code of [YOLOR-Based Multi-Task Learning](https://arxiv.org/abs/2309.16921) are released in the repository. |
|
|
|
|
|
## Acknowledgements |
|
|
|
<details><summary> <b>Expand</b> </summary> |
|
|
|
* [https://github.com/AlexeyAB/darknet](https://github.com/AlexeyAB/darknet) |
|
* [https://github.com/WongKinYiu/yolor](https://github.com/WongKinYiu/yolor) |
|
* [https://github.com/WongKinYiu/yolov7](https://github.com/WongKinYiu/yolov7) |
|
* [https://github.com/VDIGPKU/DynamicDet](https://github.com/VDIGPKU/DynamicDet) |
|
* [https://github.com/DingXiaoH/RepVGG](https://github.com/DingXiaoH/RepVGG) |
|
* [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5) |
|
* [https://github.com/meituan/YOLOv6](https://github.com/meituan/YOLOv6) |
|
|
|
</details> |
|
|