|
--- |
|
pipeline_tag: feature-extraction |
|
library_name: "transformers.js" |
|
language: |
|
- en |
|
license: mit |
|
--- |
|
|
|
_Fork of https://huggingface.co/thenlper/gte-small with ONNX weights to be compatible with Transformers.js. See [JavaScript usage](#javascript)._ |
|
|
|
--- |
|
|
|
# gte-small |
|
|
|
General Text Embeddings (GTE) model. |
|
|
|
The GTE models are trained by Alibaba DAMO Academy. They are mainly based on the BERT framework and currently offer three different sizes of models, including [GTE-large](https://huggingface.co/thenlper/gte-large), [GTE-base](https://huggingface.co/thenlper/gte-base), and [GTE-small](https://huggingface.co/thenlper/gte-small). The GTE models are trained on a large-scale corpus of relevance text pairs, covering a wide range of domains and scenarios. This enables the GTE models to be applied to various downstream tasks of text embeddings, including **information retrieval**, **semantic textual similarity**, **text reranking**, etc. |
|
|
|
## Metrics |
|
|
|
Performance of GTE models were compared with other popular text embedding models on the MTEB benchmark. For more detailed comparison results, please refer to the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard). |
|
|
|
|
|
|
|
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (56) | Clustering (11) | Pair Classification (3) | Reranking (4) | Retrieval (15) | STS (10) | Summarization (1) | Classification (12) | |
|
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |
|
| [**gte-large**](https://huggingface.co/thenlper/gte-large) | 0.67 | 1024 | 512 | **63.13** | 46.84 | 85.00 | 59.13 | 52.22 | 83.35 | 31.66 | 73.33 | |
|
| [**gte-base**](https://huggingface.co/thenlper/gte-base) | 0.22 | 768 | 512 | **62.39** | 46.2 | 84.57 | 58.61 | 51.14 | 82.3 | 31.17 | 73.01 | |
|
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1.34 | 1024| 512 | 62.25 | 44.49 | 86.03 | 56.61 | 50.56 | 82.05 | 30.19 | 75.24 | |
|
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.44 | 768 | 512 | 61.5 | 43.80 | 85.73 | 55.91 | 50.29 | 81.05 | 30.28 | 73.84 | |
|
| [**gte-small**](https://huggingface.co/thenlper/gte-small) | 0.07 | 384 | 512 | **61.36** | 44.89 | 83.54 | 57.7 | 49.46 | 82.07 | 30.42 | 72.31 | |
|
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | - | 1536 | 8192 | 60.99 | 45.9 | 84.89 | 56.32 | 49.25 | 80.97 | 30.8 | 70.93 | |
|
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.13 | 384 | 512 | 59.93 | 39.92 | 84.67 | 54.32 | 49.04 | 80.39 | 31.16 | 72.94 | |
|
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 9.73 | 768 | 512 | 59.51 | 43.72 | 85.06 | 56.42 | 42.24 | 82.63 | 30.08 | 73.42 | |
|
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 0.44 | 768 | 514 | 57.78 | 43.69 | 83.04 | 59.36 | 43.81 | 80.28 | 27.49 | 65.07 | |
|
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 28.27 | 4096 | 2048 | 57.59 | 38.93 | 81.9 | 55.65 | 48.22 | 77.74 | 33.6 | 66.19 | |
|
| [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 0.13 | 384 | 512 | 56.53 | 41.81 | 82.41 | 58.44 | 42.69 | 79.8 | 27.9 | 63.21 | |
|
| [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 0.09 | 384 | 512 | 56.26 | 42.35 | 82.37 | 58.04 | 41.95 | 78.9 | 30.81 | 63.05 | |
|
| [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 0.44 | 768 | 512 | 56.00 | 41.1 | 82.54 | 53.14 | 41.88 | 76.51 | 30.36 | 66.68 | |
|
| [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 0.22 | 768 | 512 | 55.27 | 40.21 | 85.18 | 53.09 | 33.63 | 81.14 | 31.39 | 69.81 | |
|
|
|
|
|
## Usage |
|
|
|
This model can be used with both [Python](#python) and [JavaScript](#javascript). |
|
|
|
### Python |
|
Use with [Transformers](https://huggingface.co/docs/transformers/index) and [PyTorch](https://pytorch.org/docs/stable/index.html): |
|
|
|
```python |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
def average_pool(last_hidden_states: Tensor, |
|
attention_mask: Tensor) -> Tensor: |
|
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) |
|
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] |
|
|
|
input_texts = [ |
|
"what is the capital of China?", |
|
"how to implement quick sort in python?", |
|
"Beijing", |
|
"sorting algorithms" |
|
] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Supabase/gte-small") |
|
model = AutoModel.from_pretrained("Supabase/gte-small") |
|
|
|
# Tokenize the input texts |
|
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') |
|
|
|
outputs = model(**batch_dict) |
|
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) |
|
|
|
# (Optionally) normalize embeddings |
|
embeddings = F.normalize(embeddings, p=2, dim=1) |
|
scores = (embeddings[:1] @ embeddings[1:].T) * 100 |
|
print(scores.tolist()) |
|
``` |
|
|
|
Use with [sentence-transformers](https://www.sbert.net/): |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
from sentence_transformers.util import cos_sim |
|
|
|
sentences = ['That is a happy person', 'That is a very happy person'] |
|
|
|
model = SentenceTransformer('Supabase/gte-small') |
|
embeddings = model.encode(sentences) |
|
print(cos_sim(embeddings[0], embeddings[1])) |
|
``` |
|
|
|
### JavaScript |
|
This model can be used with JavaScript via [Transformers.js](https://huggingface.co/docs/transformers.js/index). |
|
|
|
Use with [Deno](https://deno.land/manual/introduction) or [Supabase Edge Functions](https://supabase.com/docs/guides/functions): |
|
|
|
```ts |
|
import { serve } from 'https://deno.land/std@0.168.0/http/server.ts' |
|
import { env, pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.5.0' |
|
|
|
// Configuration for Deno runtime |
|
env.useBrowserCache = false; |
|
env.allowLocalModels = false; |
|
|
|
const pipe = await pipeline( |
|
'feature-extraction', |
|
'Supabase/gte-small', |
|
); |
|
|
|
serve(async (req) => { |
|
// Extract input string from JSON body |
|
const { input } = await req.json(); |
|
|
|
// Generate the embedding from the user input |
|
const output = await pipe(input, { |
|
pooling: 'mean', |
|
normalize: true, |
|
}); |
|
|
|
// Extract the embedding output |
|
const embedding = Array.from(output.data); |
|
|
|
// Return the embedding |
|
return new Response( |
|
JSON.stringify({ embedding }), |
|
{ headers: { 'Content-Type': 'application/json' } } |
|
); |
|
}); |
|
``` |
|
|
|
Use within the browser ([JavaScript Modules](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules)): |
|
|
|
```html |
|
<script type="module"> |
|
|
|
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.5.0'; |
|
|
|
const pipe = await pipeline( |
|
'feature-extraction', |
|
'Supabase/gte-small', |
|
); |
|
|
|
// Generate the embedding from text |
|
const output = await pipe('Hello world', { |
|
pooling: 'mean', |
|
normalize: true, |
|
}); |
|
|
|
// Extract the embedding output |
|
const embedding = Array.from(output.data); |
|
|
|
console.log(embedding); |
|
|
|
</script> |
|
``` |
|
|
|
Use within [Node.js](https://nodejs.org/en/docs) or a web bundler ([Webpack](https://webpack.js.org/concepts/), etc): |
|
|
|
```js |
|
import { pipeline } from '@xenova/transformers'; |
|
|
|
const pipe = await pipeline( |
|
'feature-extraction', |
|
'Supabase/gte-small', |
|
); |
|
|
|
// Generate the embedding from text |
|
const output = await pipe('Hello world', { |
|
pooling: 'mean', |
|
normalize: true, |
|
}); |
|
|
|
// Extract the embedding output |
|
const embedding = Array.from(output.data); |
|
|
|
console.log(embedding); |
|
``` |
|
|
|
### Limitation |
|
|
|
This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens. |
|
|