virginie-d
commited on
Commit
·
b320464
1
Parent(s):
e7a8a00
changing xformers
Browse files- handler.py +88 -7
handler.py
CHANGED
@@ -1,10 +1,14 @@
|
|
1 |
-
from typing import Dict, List, Any
|
2 |
-
from transformers import pipeline
|
3 |
-
import torch, PIL,
|
4 |
-
|
5 |
-
import
|
6 |
-
|
|
|
7 |
|
|
|
|
|
|
|
8 |
|
9 |
class EndpointHandler():
|
10 |
def __init__(self, path=""):
|
@@ -17,7 +21,7 @@ class EndpointHandler():
|
|
17 |
)
|
18 |
self.tokenizer = LlamaTokenizer.from_pretrained('lmsys/vicuna-7b-v1.5')
|
19 |
# create inference pipeline
|
20 |
-
# self.pipeline = pipeline(model=
|
21 |
|
22 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
23 |
"""
|
@@ -29,9 +33,86 @@ class EndpointHandler():
|
|
29 |
- "label": A string representing what the label/class is. There can be multiple labels.
|
30 |
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
|
31 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
inputs = data.pop("inputs", data)
|
|
|
|
|
|
|
33 |
gen_kwargs = {"max_length": 2048, "do_sample": False}
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# pass inputs with all kwargs in data
|
36 |
# prediction = self.pipeline(inputs)
|
37 |
|
|
|
1 |
+
from typing import Dict, List, Any, Optional, Tuple, Literal
|
2 |
+
# from transformers import pipeline
|
3 |
+
import torch, PIL, triton, protobuf
|
4 |
+
from torchvision import transforms
|
5 |
+
# import torchvision, einops
|
6 |
+
# import xformers, accelerate
|
7 |
+
from transformers import AutoModelForCausalLM, LlamaTokenizer, PretrainedConfig
|
8 |
|
9 |
+
LANGUAGE_TOKEN_TYPE = 0
|
10 |
+
VISION_TOKEN_TYPE = 1
|
11 |
+
config = PretrainedConfig.from_json_file('config.json')
|
12 |
|
13 |
class EndpointHandler():
|
14 |
def __init__(self, path=""):
|
|
|
21 |
)
|
22 |
self.tokenizer = LlamaTokenizer.from_pretrained('lmsys/vicuna-7b-v1.5')
|
23 |
# create inference pipeline
|
24 |
+
# self.pipeline = pipeline("text-generation", model="THUDM/cogvlm-chat-hf", trust_remote_code=True)
|
25 |
|
26 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
27 |
"""
|
|
|
33 |
- "label": A string representing what the label/class is. There can be multiple labels.
|
34 |
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
|
35 |
"""
|
36 |
+
|
37 |
+
def _history_to_prompt(signal_type, history, query):
|
38 |
+
if signal_type == 'base':
|
39 |
+
return query
|
40 |
+
elif signal_type == 'vqa':
|
41 |
+
answer_format = 'Short answer:'
|
42 |
+
elif signal_type == 'chat':
|
43 |
+
answer_format = 'Answer:'
|
44 |
+
else:
|
45 |
+
assert False, f"Unknown signal type {signal_type}"
|
46 |
+
|
47 |
+
prompt = ''
|
48 |
+
for i, (old_query, response) in enumerate(history):
|
49 |
+
prompt += 'Question: ' + old_query + " {} ".format(answer_format) + response + "\n"
|
50 |
+
prompt += 'Question: {} {}'.format(query, answer_format)
|
51 |
+
return prompt
|
52 |
+
|
53 |
+
def build_conversation_input_ids(
|
54 |
+
tokenizer: "PreTrainedTokenizer",
|
55 |
+
*,
|
56 |
+
query: str,
|
57 |
+
history: Optional[List[Tuple[str, str]]] = None,
|
58 |
+
images: Optional[List["PIL.Image"]] = None,
|
59 |
+
template_version: Optional[Literal["base", "chat", "vqa"]] = None,
|
60 |
+
config=config
|
61 |
+
):
|
62 |
+
image_size: int = config.vision_config['image_size']
|
63 |
+
patch_size: int = config.vision_config['patch_size']
|
64 |
+
template_version = template_version or config.template_version
|
65 |
+
assert images is None or len(images) <= 1, f"not support multi images by now."
|
66 |
+
history = history or []
|
67 |
+
text = _history_to_prompt(template_version, history, query)
|
68 |
+
|
69 |
+
input_ids = [tokenizer.bos_token_id]
|
70 |
+
token_type_ids = [LANGUAGE_TOKEN_TYPE]
|
71 |
+
if images is not None and len(images) == 1:
|
72 |
+
# vision
|
73 |
+
transform = transforms.Compose(
|
74 |
+
[
|
75 |
+
transforms.Resize(
|
76 |
+
(image_size, image_size), interpolation=transforms.InterpolationMode.BICUBIC
|
77 |
+
),
|
78 |
+
transforms.ToTensor(),
|
79 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
80 |
+
]
|
81 |
+
)
|
82 |
+
images = [transform(images[0])]
|
83 |
+
# language
|
84 |
+
vision_token_num = (image_size // patch_size) * (image_size // patch_size) + 2
|
85 |
+
input_ids += [tokenizer.pad_token_id] * vision_token_num
|
86 |
+
token_type_ids += [VISION_TOKEN_TYPE] * vision_token_num
|
87 |
+
text_ids = tokenizer.encode(text, add_special_tokens=False)
|
88 |
+
|
89 |
+
input_ids += text_ids
|
90 |
+
token_type_ids += [LANGUAGE_TOKEN_TYPE] * len(text_ids)
|
91 |
+
attention_mask = [1] * len(input_ids)
|
92 |
+
|
93 |
+
return {
|
94 |
+
'input_ids': torch.tensor(input_ids, dtype=torch.long),
|
95 |
+
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
|
96 |
+
'attention_mask': torch.tensor(attention_mask, dtype=torch.long),
|
97 |
+
'images': images,
|
98 |
+
}
|
99 |
+
|
100 |
inputs = data.pop("inputs", data)
|
101 |
+
query = inputs.pop("query", data)
|
102 |
+
image = inputs.pop("image", data)
|
103 |
+
|
104 |
gen_kwargs = {"max_length": 2048, "do_sample": False}
|
105 |
|
106 |
+
inputs = build_conversation_input_ids(self.tokenizer, query=query, history=[], images=[image],
|
107 |
+
template_version='vqa')
|
108 |
+
|
109 |
+
inputs = {'inputs': {
|
110 |
+
'input_ids': inputs['input_ids'].unsqueeze(0).to('cuda'),
|
111 |
+
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to('cuda'),
|
112 |
+
'attention_mask': inputs['attention_mask'].unsqueeze(0).to('cuda'),
|
113 |
+
'images': [[inputs['images'][0].to('cuda').to(torch.bfloat16)]],
|
114 |
+
}}
|
115 |
+
|
116 |
# pass inputs with all kwargs in data
|
117 |
# prediction = self.pipeline(inputs)
|
118 |
|