Student0809's picture
Add files using upload-large-folder tool
cb2428f verified
# Copyright (c) Alibaba, Inc. and its affiliates.
import inspect
import os
import shutil
import tempfile
from types import MethodType
from typing import Any, Dict, List, Mapping, Optional, Tuple, Union
import torch
import torch.nn as nn
from modelscope.hub.utils.utils import get_cache_dir
from transformers import FeatureExtractionMixin, GenerationConfig, PreTrainedModel, PreTrainedTokenizerBase
from transformers import ProcessorMixin as HfProcessorMixin
from swift.utils import deep_getattr, get_logger
try:
from transformers import BaseImageProcessor
Processor = Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, HfProcessorMixin]
except ImportError:
Processor = Union[PreTrainedTokenizerBase, FeatureExtractionMixin, HfProcessorMixin]
if 'TOKENIZERS_PARALLELISM' not in os.environ:
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
logger = get_logger()
Tool = Dict[str, Union[str, Dict]]
History = List[Union[Tuple[str, str], List[str]]]
Message = Dict[str, Union[str, List[Dict[str, Any]]]]
Messages = List[Message]
class ProcessorMixin:
@property
def tokenizer(self):
tokenizer = self.processor
if not isinstance(tokenizer, PreTrainedTokenizerBase) and hasattr(tokenizer, 'tokenizer'):
tokenizer = tokenizer.tokenizer
return tokenizer
@tokenizer.setter
def tokenizer(self, value):
if self.processor is self.tokenizer:
self.processor = value
elif self.tokenizer is not value:
raise AttributeError('Please use `self.processor` for assignment.')
def to_float_dtype(data: Any, dtype: torch.dtype) -> Any:
"""Change the float inputs to a dtype"""
if isinstance(data, Mapping):
return type(data)({k: to_float_dtype(v, dtype) for k, v in data.items()})
elif isinstance(data, (tuple, list)):
return type(data)(to_float_dtype(v, dtype) for v in data)
elif isinstance(data, torch.Tensor) and torch.is_floating_point(data):
return data.to(dtype=dtype)
else:
return data
def to_device(data: Any, device: Union[str, torch.device, int]) -> Any:
"""Move inputs to a device"""
if isinstance(data, Mapping):
return type(data)({k: to_device(v, device) for k, v in data.items()})
elif isinstance(data, (tuple, list)):
return type(data)(to_device(v, device) for v in data)
elif isinstance(data, torch.Tensor):
return data.to(device=device)
else:
return data
def set_generation_config(model: nn.Module, generation_config: GenerationConfig) -> None:
old_generation_config = getattr(model, 'generation_config', None)
old_generation_priority_config = ['no_repeat_ngram_size', 'num_beams']
if old_generation_config is not None:
for k, old_v in dir(old_generation_config).items():
if k.startswith('_'):
continue
v = getattr(generation_config, k, None)
if k in old_generation_priority_config or old_v is not None and v is None:
setattr(generation_config, k, old_v)
model.generation_config = generation_config
def is_moe_model(model):
if 'Moe' in model.__class__.__name__:
return True
for key in ['num_experts', 'num_experts_per_tok', 'moe_intermediate_size']:
if hasattr(model.config, key):
return True
return False
def find_module_list(model) -> Optional[nn.ModuleList]:
module_lists = []
for m in model.modules():
if hasattr(m, 'gradient_checkpointing') or m.__class__.__name__ == 'CheckpointWrapper':
return
if (isinstance(m, (nn.ModuleList, nn.Sequential)) and len(m) >= 10
and 'mlp' not in m[0].__class__.__name__.lower()): # fix moe
module_lists.append(m)
if module_lists:
return max(module_lists, key=lambda x: len(x))
def _kwargs_to_args(func, args, kwargs) -> Optional[List[Any]]:
parameters = inspect.signature(func).parameters
args = list(args)
parameters = list(parameters.items())[len(args):]
for key, param in parameters:
if key in kwargs:
args.append(kwargs[key])
elif param.default != param.empty:
args.append(param.default)
else:
return
return args
def _add_gradient_checkpointing(module_list):
requires_grad = None
def _new_forward(self, *args, **kwargs):
nonlocal requires_grad
if requires_grad is None:
requires_grad = any(p.requires_grad for p in self.parameters())
new_args = _kwargs_to_args(self.__old_forward, args, kwargs)
if new_args is not None and self.gradient_checkpointing and self.training:
if new_args and isinstance(new_args[0], torch.Tensor) and requires_grad and not new_args[0].requires_grad:
new_args[0].requires_grad_(True)
layer_ret = self._gradient_checkpointing_func(self.__old_forward, *new_args)
logger.info_once('Successfully using dynamic gradient checkpointing.')
else:
layer_ret = self.__old_forward(*args, **kwargs)
return layer_ret
for module in module_list:
module.gradient_checkpointing = False
if hasattr(module, '_old_forward'): # device_map
__old_forward = module._old_forward
module._old_forward = MethodType(_new_forward, module)
else:
__old_forward = module.forward
module.forward = MethodType(_new_forward, module)
module.__old_forward = __old_forward
def dynamic_gradient_checkpointing(model) -> None:
from .model import ModelMeta, get_model_arch
model_meta: ModelMeta = model.model_meta
model_arch = get_model_arch(model_meta.model_arch)
if model_meta.is_multimodal and model_arch:
tower_names = model_arch.language_model + model_arch.vision_tower
else:
tower_names = [None]
for tower_name in tower_names:
if tower_name is None:
model_tower = model
else:
model_tower = deep_getattr(model, tower_name)
module_list = find_module_list(model_tower)
if module_list is None:
continue
_add_gradient_checkpointing(module_list)
logger.info(f'Automatically add gradient_checkpointing to {model_tower.__class__}.')
def history_to_messages(history: History,
system: Optional[str] = None,
roles: Optional[List[List[str]]] = None) -> 'Messages':
"""
history: [['query1', 'response1'], ['query2', 'response2']]
or [['query1', 'response1'], ['query2', None]]
"""
messages = []
if not roles:
roles = [['user', 'assistant']] * len(history)
else:
assert len(roles) == len(history), f'len(roles): {len(roles)}, len(history): {len(history)}'
if system is not None:
messages.append({'role': 'system', 'content': system})
for role, h in zip(roles, history):
assert isinstance(h, (list, tuple))
if h[0] is not None:
messages.append({'role': role[0], 'content': h[0]})
if h[1] is not None:
messages.append({'role': role[1], 'content': h[1]})
return messages
def messages_to_history(messages: 'Messages') -> Dict[str, Any]:
system = None
messages = messages.copy()
if messages[0]['role'] == 'system':
system = messages[0]['content']
messages = messages[1::]
if len(messages) % 2 == 1:
messages.append({'role': 'assistant', 'content': None})
history = []
history_roles = []
for user_message, assistant_message in zip(messages[::2], messages[1::2]):
assert user_message['role'] in {'tool', 'user'}, f'user_message {user_message}'
assert assistant_message['role'] == 'assistant', f'assistant_message: {assistant_message}'
history.append([user_message['content'], assistant_message['content']])
history_roles.append([user_message['role'], assistant_message['role']])
query, response = history.pop() if history else (None, None)
query_role = history_roles.pop()[0] if history_roles else None
return {
'history': history,
'history_roles': history_roles,
'query': query,
'query_role': query_role,
'response': response,
'system': system,
}
def save_checkpoint(model: Optional[PreTrainedModel],
processor: 'Processor',
output_dir: str,
*,
safe_serialization: bool = True,
max_shard_size: Union[int, str] = '5GB',
model_dirs: List[str] = None,
additional_saved_files: Optional[List[str]] = None) -> None:
if model is not None:
if model.__class__.__name__ != 'SentenceTransformer':
model.save_pretrained(output_dir, safe_serialization=safe_serialization, max_shard_size=max_shard_size)
else:
model.save_pretrained(output_dir, safe_serialization=safe_serialization)
# copy sentencetransformers files
from swift.utils import copy_files_by_pattern
copy_files_by_pattern(model.model_dir, output_dir, '*.py')
copy_files_by_pattern(model.model_dir, output_dir, '*.json')
processor.save_pretrained(output_dir)
if model_dirs is None:
model_dirs = []
else:
model_dirs = model_dirs.copy()
if model and model.model_dir and model.model_dir not in model_dirs:
model_dirs.append(model.model_dir)
for src_file in additional_saved_files or [] + ['preprocessor_config.json', 'args.json']:
for model_dir in model_dirs:
src_path: str = os.path.join(model_dir, src_file)
tgt_path = os.path.join(output_dir, src_file)
if os.path.isfile(src_path):
shutil.copy(src_path, tgt_path)
break
elif os.path.isdir(src_path):
shutil.copytree(src_path, tgt_path)
break
TEMP_DIR_POOL = {}
def get_temporary_cache_files_directory(prefix=None):
if prefix is None:
import datasets.config
prefix = datasets.config.TEMP_CACHE_DIR_PREFIX
global TEMP_DIR_POOL
if prefix in TEMP_DIR_POOL:
TEMP_DIR = TEMP_DIR_POOL[prefix]
else:
tmp_dir = os.path.join(get_cache_dir(), 'tmp')
os.makedirs(tmp_dir, exist_ok=True)
kwargs = {}
parameters = inspect.signature(tempfile.TemporaryDirectory.__init__).parameters
if 'ignore_cleanup_errors' in parameters:
kwargs['ignore_cleanup_errors'] = True
TEMP_DIR = tempfile.TemporaryDirectory(prefix=prefix, dir=tmp_dir, **kwargs)
logger.info(f'create tmp_dir: {TEMP_DIR.name}')
TEMP_DIR_POOL[prefix] = TEMP_DIR
return TEMP_DIR.name
def get_ckpt_dir(model_dir: str, adapters_dir: Optional[List[str]]) -> str:
model_dirs = (adapters_dir or []).copy()
if model_dir:
model_dirs.append(model_dir)
# The adapter takes higher priority.
ckpt_dir = None
for model_dir in model_dirs:
if os.path.exists(os.path.join(model_dir, 'args.json')):
ckpt_dir = model_dir
break
return ckpt_dir