File size: 11,271 Bytes
cb2428f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Copyright (c) Alibaba, Inc. and its affiliates.
import inspect
import os
import shutil
import tempfile
from types import MethodType
from typing import Any, Dict, List, Mapping, Optional, Tuple, Union

import torch
import torch.nn as nn
from modelscope.hub.utils.utils import get_cache_dir
from transformers import FeatureExtractionMixin, GenerationConfig, PreTrainedModel, PreTrainedTokenizerBase
from transformers import ProcessorMixin as HfProcessorMixin

from swift.utils import deep_getattr, get_logger

try:
    from transformers import BaseImageProcessor
    Processor = Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, HfProcessorMixin]
except ImportError:
    Processor = Union[PreTrainedTokenizerBase, FeatureExtractionMixin, HfProcessorMixin]

if 'TOKENIZERS_PARALLELISM' not in os.environ:
    os.environ['TOKENIZERS_PARALLELISM'] = 'false'

logger = get_logger()

Tool = Dict[str, Union[str, Dict]]
History = List[Union[Tuple[str, str], List[str]]]
Message = Dict[str, Union[str, List[Dict[str, Any]]]]
Messages = List[Message]


class ProcessorMixin:

    @property
    def tokenizer(self):
        tokenizer = self.processor
        if not isinstance(tokenizer, PreTrainedTokenizerBase) and hasattr(tokenizer, 'tokenizer'):
            tokenizer = tokenizer.tokenizer
        return tokenizer

    @tokenizer.setter
    def tokenizer(self, value):
        if self.processor is self.tokenizer:
            self.processor = value
        elif self.tokenizer is not value:
            raise AttributeError('Please use `self.processor` for assignment.')


def to_float_dtype(data: Any, dtype: torch.dtype) -> Any:
    """Change the float inputs to a dtype"""
    if isinstance(data, Mapping):
        return type(data)({k: to_float_dtype(v, dtype) for k, v in data.items()})
    elif isinstance(data, (tuple, list)):
        return type(data)(to_float_dtype(v, dtype) for v in data)
    elif isinstance(data, torch.Tensor) and torch.is_floating_point(data):
        return data.to(dtype=dtype)
    else:
        return data


def to_device(data: Any, device: Union[str, torch.device, int]) -> Any:
    """Move inputs to a device"""
    if isinstance(data, Mapping):
        return type(data)({k: to_device(v, device) for k, v in data.items()})
    elif isinstance(data, (tuple, list)):
        return type(data)(to_device(v, device) for v in data)
    elif isinstance(data, torch.Tensor):
        return data.to(device=device)
    else:
        return data


def set_generation_config(model: nn.Module, generation_config: GenerationConfig) -> None:
    old_generation_config = getattr(model, 'generation_config', None)
    old_generation_priority_config = ['no_repeat_ngram_size', 'num_beams']
    if old_generation_config is not None:
        for k, old_v in dir(old_generation_config).items():
            if k.startswith('_'):
                continue
            v = getattr(generation_config, k, None)
            if k in old_generation_priority_config or old_v is not None and v is None:
                setattr(generation_config, k, old_v)
    model.generation_config = generation_config


def is_moe_model(model):
    if 'Moe' in model.__class__.__name__:
        return True
    for key in ['num_experts', 'num_experts_per_tok', 'moe_intermediate_size']:
        if hasattr(model.config, key):
            return True
    return False


def find_module_list(model) -> Optional[nn.ModuleList]:
    module_lists = []
    for m in model.modules():
        if hasattr(m, 'gradient_checkpointing') or m.__class__.__name__ == 'CheckpointWrapper':
            return
        if (isinstance(m, (nn.ModuleList, nn.Sequential)) and len(m) >= 10
                and 'mlp' not in m[0].__class__.__name__.lower()):  # fix moe
            module_lists.append(m)
    if module_lists:
        return max(module_lists, key=lambda x: len(x))


def _kwargs_to_args(func, args, kwargs) -> Optional[List[Any]]:
    parameters = inspect.signature(func).parameters
    args = list(args)
    parameters = list(parameters.items())[len(args):]
    for key, param in parameters:
        if key in kwargs:
            args.append(kwargs[key])
        elif param.default != param.empty:
            args.append(param.default)
        else:
            return
    return args


def _add_gradient_checkpointing(module_list):

    requires_grad = None

    def _new_forward(self, *args, **kwargs):
        nonlocal requires_grad
        if requires_grad is None:
            requires_grad = any(p.requires_grad for p in self.parameters())

        new_args = _kwargs_to_args(self.__old_forward, args, kwargs)
        if new_args is not None and self.gradient_checkpointing and self.training:
            if new_args and isinstance(new_args[0], torch.Tensor) and requires_grad and not new_args[0].requires_grad:
                new_args[0].requires_grad_(True)
            layer_ret = self._gradient_checkpointing_func(self.__old_forward, *new_args)
            logger.info_once('Successfully using dynamic gradient checkpointing.')
        else:
            layer_ret = self.__old_forward(*args, **kwargs)
        return layer_ret

    for module in module_list:
        module.gradient_checkpointing = False
        if hasattr(module, '_old_forward'):  # device_map
            __old_forward = module._old_forward
            module._old_forward = MethodType(_new_forward, module)
        else:
            __old_forward = module.forward
            module.forward = MethodType(_new_forward, module)
        module.__old_forward = __old_forward


def dynamic_gradient_checkpointing(model) -> None:
    from .model import ModelMeta, get_model_arch
    model_meta: ModelMeta = model.model_meta
    model_arch = get_model_arch(model_meta.model_arch)
    if model_meta.is_multimodal and model_arch:
        tower_names = model_arch.language_model + model_arch.vision_tower
    else:
        tower_names = [None]

    for tower_name in tower_names:
        if tower_name is None:
            model_tower = model
        else:
            model_tower = deep_getattr(model, tower_name)
        module_list = find_module_list(model_tower)
        if module_list is None:
            continue
        _add_gradient_checkpointing(module_list)
        logger.info(f'Automatically add gradient_checkpointing to {model_tower.__class__}.')


def history_to_messages(history: History,
                        system: Optional[str] = None,
                        roles: Optional[List[List[str]]] = None) -> 'Messages':
    """
    history: [['query1', 'response1'], ['query2', 'response2']]
        or [['query1', 'response1'], ['query2', None]]
    """
    messages = []
    if not roles:
        roles = [['user', 'assistant']] * len(history)
    else:
        assert len(roles) == len(history), f'len(roles): {len(roles)}, len(history): {len(history)}'
    if system is not None:
        messages.append({'role': 'system', 'content': system})

    for role, h in zip(roles, history):
        assert isinstance(h, (list, tuple))
        if h[0] is not None:
            messages.append({'role': role[0], 'content': h[0]})
        if h[1] is not None:
            messages.append({'role': role[1], 'content': h[1]})
    return messages


def messages_to_history(messages: 'Messages') -> Dict[str, Any]:
    system = None
    messages = messages.copy()
    if messages[0]['role'] == 'system':
        system = messages[0]['content']
        messages = messages[1::]
    if len(messages) % 2 == 1:
        messages.append({'role': 'assistant', 'content': None})
    history = []
    history_roles = []
    for user_message, assistant_message in zip(messages[::2], messages[1::2]):
        assert user_message['role'] in {'tool', 'user'}, f'user_message {user_message}'
        assert assistant_message['role'] == 'assistant', f'assistant_message: {assistant_message}'
        history.append([user_message['content'], assistant_message['content']])
        history_roles.append([user_message['role'], assistant_message['role']])
    query, response = history.pop() if history else (None, None)
    query_role = history_roles.pop()[0] if history_roles else None
    return {
        'history': history,
        'history_roles': history_roles,
        'query': query,
        'query_role': query_role,
        'response': response,
        'system': system,
    }


def save_checkpoint(model: Optional[PreTrainedModel],
                    processor: 'Processor',
                    output_dir: str,
                    *,
                    safe_serialization: bool = True,
                    max_shard_size: Union[int, str] = '5GB',
                    model_dirs: List[str] = None,
                    additional_saved_files: Optional[List[str]] = None) -> None:
    if model is not None:
        if model.__class__.__name__ != 'SentenceTransformer':
            model.save_pretrained(output_dir, safe_serialization=safe_serialization, max_shard_size=max_shard_size)
        else:
            model.save_pretrained(output_dir, safe_serialization=safe_serialization)
            # copy sentencetransformers files
            from swift.utils import copy_files_by_pattern
            copy_files_by_pattern(model.model_dir, output_dir, '*.py')
            copy_files_by_pattern(model.model_dir, output_dir, '*.json')
    processor.save_pretrained(output_dir)

    if model_dirs is None:
        model_dirs = []
    else:
        model_dirs = model_dirs.copy()
    if model and model.model_dir and model.model_dir not in model_dirs:
        model_dirs.append(model.model_dir)
    for src_file in additional_saved_files or [] + ['preprocessor_config.json', 'args.json']:
        for model_dir in model_dirs:
            src_path: str = os.path.join(model_dir, src_file)
            tgt_path = os.path.join(output_dir, src_file)
            if os.path.isfile(src_path):
                shutil.copy(src_path, tgt_path)
                break
            elif os.path.isdir(src_path):
                shutil.copytree(src_path, tgt_path)
                break


TEMP_DIR_POOL = {}


def get_temporary_cache_files_directory(prefix=None):
    if prefix is None:
        import datasets.config
        prefix = datasets.config.TEMP_CACHE_DIR_PREFIX
    global TEMP_DIR_POOL
    if prefix in TEMP_DIR_POOL:
        TEMP_DIR = TEMP_DIR_POOL[prefix]
    else:
        tmp_dir = os.path.join(get_cache_dir(), 'tmp')
        os.makedirs(tmp_dir, exist_ok=True)
        kwargs = {}
        parameters = inspect.signature(tempfile.TemporaryDirectory.__init__).parameters
        if 'ignore_cleanup_errors' in parameters:
            kwargs['ignore_cleanup_errors'] = True
        TEMP_DIR = tempfile.TemporaryDirectory(prefix=prefix, dir=tmp_dir, **kwargs)
        logger.info(f'create tmp_dir: {TEMP_DIR.name}')
        TEMP_DIR_POOL[prefix] = TEMP_DIR

    return TEMP_DIR.name


def get_ckpt_dir(model_dir: str, adapters_dir: Optional[List[str]]) -> str:
    model_dirs = (adapters_dir or []).copy()
    if model_dir:
        model_dirs.append(model_dir)
    # The adapter takes higher priority.
    ckpt_dir = None
    for model_dir in model_dirs:
        if os.path.exists(os.path.join(model_dir, 'args.json')):
            ckpt_dir = model_dir
            break
    return ckpt_dir