NPU支持
作者: chuanzhubin
环境准备
实验环境:8 * 昇腾910B3 64G (设备由@chuanzhubin提供, 感谢对modelscope和swift的支持~)
# 创建新的conda虚拟环境(可选)
conda create -n swift-npu python=3.10 -y
conda activate swift-npu
# 设置pip全局镜像 (可选,加速下载)
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
pip install ms-swift -U
# 安装torch-npu
pip install torch-npu decorator
# 如果你想要使用deepspeed (控制显存占用,训练速度会有一定下降)
pip install deepspeed
测试环境是否安装正确,NPU能否被正常加载:
from transformers.utils import is_torch_npu_available
import torch
print(is_torch_npu_available()) # True
print(torch.npu.device_count()) # 8
print(torch.randn(10, device='npu:0'))
查看NPU的P2P连接,这里看到每个NPU都通过7条HCCS与其他NPU互联
(valle) root@valle:~/src# npu-smi info -t topo
NPU0 NPU1 NPU2 NPU3 NPU4 NPU5 NPU6 NPU7 CPU Affinity
NPU0 X HCCS HCCS HCCS HCCS HCCS HCCS HCCS 144-167
NPU1 HCCS X HCCS HCCS HCCS HCCS HCCS HCCS 144-167
NPU2 HCCS HCCS X HCCS HCCS HCCS HCCS HCCS 96-119
NPU3 HCCS HCCS HCCS X HCCS HCCS HCCS HCCS 96-119
NPU4 HCCS HCCS HCCS HCCS X HCCS HCCS HCCS 0-23
NPU5 HCCS HCCS HCCS HCCS HCCS X HCCS HCCS 0-23
NPU6 HCCS HCCS HCCS HCCS HCCS HCCS X HCCS 48-71
NPU7 HCCS HCCS HCCS HCCS HCCS HCCS HCCS X 48-71
Legend:
X = Self
SYS = Path traversing PCIe and NUMA nodes. Nodes are connected through SMP, such as QPI, UPI.
PHB = Path traversing PCIe and the PCIe host bridge of a CPU.
PIX = Path traversing a single PCIe switch
PXB = Path traversing multiple PCIe switches
HCCS = Connection traversing HCCS.
NA = Unknown relationship.
查看NPU状态, npu-smi命令详解可以查看官方文档
(valle) root@valle:~/src# npu-smi info
+------------------------------------------------------------------------------------------------+
| npu-smi 24.1.rc1.b030 Version: 24.1.rc1.b030 |
+---------------------------+---------------+----------------------------------------------------+
| NPU Name | Health | Power(W) Temp(C) Hugepages-Usage(page)|
| Chip | Bus-Id | AICore(%) Memory-Usage(MB) HBM-Usage(MB) |
+===========================+===============+====================================================+
| 0 910B3 | OK | 101.8 43 0 / 0 |
| 0 | 0000:C1:00.0 | 0 0 / 0 3318 / 65536 |
+===========================+===============+====================================================+
| 1 910B3 | OK | 92.0 39 0 / 0 |
| 0 | 0000:C2:00.0 | 0 0 / 0 3314 / 65536 |
+===========================+===============+====================================================+
| 2 910B3 | OK | 102.0 40 0 / 0 |
| 0 | 0000:81:00.0 | 0 0 / 0 3314 / 65536 |
+===========================+===============+====================================================+
| 3 910B3 | OK | 99.8 40 0 / 0 |
| 0 | 0000:82:00.0 | 0 0 / 0 3314 / 65536 |
+===========================+===============+====================================================+
| 4 910B3 | OK | 98.6 45 0 / 0 |
| 0 | 0000:01:00.0 | 0 0 / 0 3314 / 65536 |
+===========================+===============+====================================================+
| 5 910B3 | OK | 99.7 44 0 / 0 |
| 0 | 0000:02:00.0 | 0 0 / 0 3314 / 65536 |
+===========================+===============+====================================================+
| 6 910B3 | OK | 103.8 45 0 / 0 |
| 0 | 0000:41:00.0 | 0 0 / 0 3314 / 65536 |
+===========================+===============+====================================================+
| 7 910B3 | OK | 98.2 44 0 / 0 |
| 0 | 0000:42:00.0 | 0 0 / 0 3315 / 65536 |
+===========================+===============+====================================================+
微调
以下介绍LoRA的微调, 全参数微调设置参数--train_type full即可.
| 模型大小 | NPU数量 | deepspeed类型 | 最大显存占用量 |
|---|---|---|---|
| 7B | 1 | None | 1 * 28 GB |
| 7B | 4 | None | 4 * 22 GB |
| 7B | 4 | zero2 | 4 * 28 GB |
| 7B | 4 | zero3 | 4 * 22 GB |
| 7B | 8 | None | 8 * 22 GB |
| 14B | 1 | None | 1 * 45 GB |
| 14B | 8 | None | 8 * 51 GB |
| 14B | 8 | zero2 | 8 * 49 GB |
| 14B | 8 | zero3 | 8 * 31 GB |
单卡训练
通过如下命令启动单卡微调: (注意: 如果微调期间出现nan的情况, 请设置--torch_dtype float32.)
# 实验环境: 昇腾910B3
# 显存需求: 28 GB
# 运行时长: 8小时
ASCEND_RT_VISIBLE_DEVICES=0 \
swift sft \
--model Qwen/Qwen2-7B-Instruct \
--dataset AI-ModelScope/blossom-math-v2 \
--num_train_epochs 5 \
--train_type lora \
--output_dir output \
--learning_rate 1e-4 \
--gradient_accumulation_steps 16 \
--save_steps 100 \
--eval_steps 100
数据并行训练
我们使用其中的4卡进行ddp训练
# 实验环境: 4 * 昇腾910B3
# 显存需求: 4 * 22 GB
# 运行时长: 2小时
NPROC_PER_NODE=4 \
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
--model Qwen/Qwen2-7B-Instruct \
--dataset AI-ModelScope/blossom-math-v2 \
--num_train_epochs 5 \
--train_type lora \
--output_dir output \
...
Deepspeed训练
ZeRO2:
# 实验环境: 4 * 昇腾910B3
# 显存需求: 4 * 28GB
# 运行时长: 3.5小时
NPROC_PER_NODE=4 \
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
--model Qwen/Qwen2-7B-Instruct \
--dataset AI-ModelScope/blossom-math-v2 \
--num_train_epochs 5 \
--train_type lora \
--output_dir output \
--deepspeed zero2 \
...
ZeRO3:
# 实验环境: 4 * 昇腾910B3
# 显存需求: 4 * 22 GB
# 运行时长: 8.5小时
NPROC_PER_NODE=4 \
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
--model Qwen/Qwen2-7B-Instruct \
--dataset AI-ModelScope/blossom-math-v2 \
--num_train_epochs 5 \
--train_type lora \
--output_dir output \
--deepspeed zero3 \
...
推理
原始模型:
ASCEND_RT_VISIBLE_DEVICES=0 swift infer \
--model Qwen/Qwen2-7B-Instruct \
--stream true --max_new_tokens 2048
LoRA微调后:
ASCEND_RT_VISIBLE_DEVICES=0 swift infer \
--adapters xxx/checkpoint-xxx --load_data_args true \
--stream true --max_new_tokens 2048
# merge-lora并推理
ASCEND_RT_VISIBLE_DEVICES=0 swift export --adapters xx/checkpoint-xxx --merge_lora true
ASCEND_RT_VISIBLE_DEVICES=0 swift infer \
--model xxx/checkpoint-xxx-merged --load_data_args true \
--stream true --max_new_tokens 2048
部署
NPU不支持使用vllm进行推理/部署加速, 但是可以使用原生pytorch进行部署.
原始模型:
ASCEND_RT_VISIBLE_DEVICES=0 swift deploy --model Qwen/Qwen2-7B-Instruct --max_new_tokens 2048
LoRA微调后:
ASCEND_RT_VISIBLE_DEVICES=0 swift deploy --adapters xxx/checkpoint-xxx --max_new_tokens 2048
# merge-lora并推理
ASCEND_RT_VISIBLE_DEVICES=0 swift export --adapters xx/checkpoint-xxx --merge_lora true
ASCEND_RT_VISIBLE_DEVICES=0 swift deploy --model xxx/checkpoint-xxx-merged --max_new_tokens 2048