StringCheese's picture
StringCheese/distilbert-base-uncased-lora-text-classification
f848fad
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: distilbert-base-uncased-lora-text-classification
    results: []

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8839
  • Accuracy: {'accuracy': 0.901}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3334 {'accuracy': 0.892}
0.3999 2.0 500 0.3850 {'accuracy': 0.892}
0.3999 3.0 750 0.4382 {'accuracy': 0.895}
0.2004 4.0 1000 0.5518 {'accuracy': 0.895}
0.2004 5.0 1250 0.6261 {'accuracy': 0.899}
0.0674 6.0 1500 0.8357 {'accuracy': 0.892}
0.0674 7.0 1750 0.8303 {'accuracy': 0.901}
0.0301 8.0 2000 0.8756 {'accuracy': 0.894}
0.0301 9.0 2250 0.8779 {'accuracy': 0.897}
0.0028 10.0 2500 0.8839 {'accuracy': 0.901}

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1
  • Datasets 2.14.4
  • Tokenizers 0.15.0