update model card README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
@@ -21,7 +20,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -29,118 +28,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
29 |
|
30 |
# VIT-food101-image-classifier
|
31 |
|
32 |
-
This model
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss:
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
0 apple_pie
|
42 |
-
1 baby_back_ribs
|
43 |
-
2 baklava
|
44 |
-
3 beef_carpaccio
|
45 |
-
4 beef_tartare
|
46 |
-
5 beet_salad
|
47 |
-
6 beignets
|
48 |
-
7 bibimbap
|
49 |
-
8 bread_pudding
|
50 |
-
9 breakfast_burrito
|
51 |
-
10 bruschetta
|
52 |
-
11 caesar_salad
|
53 |
-
12 cannoli
|
54 |
-
13 caprese_salad
|
55 |
-
14 carrot_cake
|
56 |
-
15 ceviche
|
57 |
-
16 cheesecake
|
58 |
-
17 cheese_plate
|
59 |
-
18 chicken_curry
|
60 |
-
19 chicken_quesadilla
|
61 |
-
20 chicken_wings
|
62 |
-
21 chocolate_cake
|
63 |
-
22 chocolate_mousse
|
64 |
-
23 churros
|
65 |
-
24 clam_chowder
|
66 |
-
25 club_sandwich
|
67 |
-
26 crab_cakes
|
68 |
-
27 creme_brulee
|
69 |
-
28 croque_madame
|
70 |
-
29 cup_cakes
|
71 |
-
30 deviled_eggs
|
72 |
-
31 donuts
|
73 |
-
32 dumplings
|
74 |
-
33 edamame
|
75 |
-
34 eggs_benedict
|
76 |
-
35 escargots
|
77 |
-
36 falafel
|
78 |
-
37 filet_mignon
|
79 |
-
38 fish_and_chips
|
80 |
-
39 foie_gras
|
81 |
-
40 french_fries
|
82 |
-
41 french_onion_soup
|
83 |
-
42 french_toast
|
84 |
-
43 fried_calamari
|
85 |
-
44 fried_rice
|
86 |
-
45 frozen_yogurt
|
87 |
-
46 garlic_bread
|
88 |
-
47 gnocchi
|
89 |
-
48 greek_salad
|
90 |
-
49 grilled_cheese_sandwich
|
91 |
-
50 grilled_salmon
|
92 |
-
51 guacamole
|
93 |
-
52 gyoza
|
94 |
-
53 hamburger
|
95 |
-
54 hot_and_sour_soup
|
96 |
-
55 hot_dog
|
97 |
-
56 huevos_rancheros
|
98 |
-
57 hummus
|
99 |
-
58 ice_cream
|
100 |
-
59 lasagna
|
101 |
-
60 lobster_bisque
|
102 |
-
61 lobster_roll_sandwich
|
103 |
-
62 macaroni_and_cheese
|
104 |
-
63 macarons
|
105 |
-
64 miso_soup
|
106 |
-
65 mussels
|
107 |
-
66 nachos
|
108 |
-
67 omelette
|
109 |
-
68 onion_rings
|
110 |
-
69 oysters
|
111 |
-
70 pad_thai
|
112 |
-
71 paella
|
113 |
-
72 pancakes
|
114 |
-
73 panna_cotta
|
115 |
-
74 peking_duck
|
116 |
-
75 pho
|
117 |
-
76 pizza
|
118 |
-
77 pork_chop
|
119 |
-
78 poutine
|
120 |
-
79 prime_rib
|
121 |
-
80 pulled_pork_sandwich
|
122 |
-
81 ramen
|
123 |
-
82 ravioli
|
124 |
-
83 red_velvet_cake
|
125 |
-
84 risotto
|
126 |
-
85 samosa
|
127 |
-
86 sashimi
|
128 |
-
87 scallops
|
129 |
-
88 seaweed_salad
|
130 |
-
89 shrimp_and_grits
|
131 |
-
90 spaghetti_bolognese
|
132 |
-
91 spaghetti_carbonara
|
133 |
-
92 spring_rolls
|
134 |
-
93 steak
|
135 |
-
94 strawberry_shortcake
|
136 |
-
95 sushi
|
137 |
-
96 tacos
|
138 |
-
97 takoyaki
|
139 |
-
98 tiramisu
|
140 |
-
99 tuna_tartare
|
141 |
-
100 waffles
|
142 |
-
|
143 |
-
The model is then used to detect new images and produce a classification based on what it thinks is in the model.
|
144 |
|
145 |
## Intended uses & limitations
|
146 |
|
@@ -164,15 +59,17 @@ The following hyperparameters were used during training:
|
|
164 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
165 |
- lr_scheduler_type: linear
|
166 |
- lr_scheduler_warmup_ratio: 0.1
|
167 |
-
- num_epochs:
|
168 |
|
169 |
### Training results
|
170 |
|
171 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
172 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
173 |
-
|
|
174 |
-
|
|
175 |
-
|
|
|
|
|
|
176 |
|
177 |
|
178 |
### Framework versions
|
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
datasets:
|
|
|
20 |
metrics:
|
21 |
- name: Accuracy
|
22 |
type: accuracy
|
23 |
+
value: 0.933
|
24 |
---
|
25 |
|
26 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
28 |
|
29 |
# VIT-food101-image-classifier
|
30 |
|
31 |
+
This model was trained from scratch on the food101 dataset.
|
32 |
It achieves the following results on the evaluation set:
|
33 |
+
- Loss: 0.5661
|
34 |
+
- Accuracy: 0.933
|
35 |
|
36 |
## Model description
|
37 |
|
38 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
## Intended uses & limitations
|
41 |
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 5
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 1.1716 | 0.99 | 62 | 1.2149 | 0.896 |
|
69 |
+
| 0.7758 | 1.99 | 124 | 0.8727 | 0.906 |
|
70 |
+
| 0.6269 | 2.99 | 186 | 0.6833 | 0.928 |
|
71 |
+
| 0.5495 | 3.99 | 248 | 0.6041 | 0.931 |
|
72 |
+
| 0.4973 | 4.99 | 310 | 0.5661 | 0.933 |
|
73 |
|
74 |
|
75 |
### Framework versions
|