whisper-small-self / README.md
St4n's picture
End of training
864e1be verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - St4n/new-2
metrics:
  - wer
model-index:
  - name: Whisper Small En - Stan
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: new-2
          type: St4n/new-2
          config: default
          split: None
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 8.513708513708513

Whisper Small En - Stan

This model is a fine-tuned version of openai/whisper-small on the new-2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1269
  • Wer: 8.5137

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 6000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0026 30.77 200 0.0885 3.0303
0.0001 61.54 400 0.1035 8.8023
0.0 92.31 600 0.1082 8.8023
0.0 123.08 800 0.1111 8.5137
0.0 153.85 1000 0.1128 8.5137
0.0 184.62 1200 0.1143 8.5137
0.0 215.38 1400 0.1153 8.5137
0.0 246.15 1600 0.1162 8.5137
0.0 276.92 1800 0.1169 8.5137
0.0 307.69 2000 0.1176 8.5137
0.0 338.46 2200 0.1196 8.5137
0.0 369.23 2400 0.1211 8.5137
0.0 400.0 2600 0.1217 8.5137
0.0 430.77 2800 0.1221 8.5137
0.0 461.54 3000 0.1224 8.5137
0.0 492.31 3200 0.1225 8.5137
0.0 523.08 3400 0.1227 8.5137
0.0 553.85 3600 0.1228 8.5137
0.0 584.62 3800 0.1229 8.5137
0.0 615.38 4000 0.1230 8.5137
0.0 646.15 4200 0.1253 8.5137
0.0 676.92 4400 0.1263 8.5137
0.0 707.69 4600 0.1265 8.5137
0.0 738.46 4800 0.1267 8.5137
0.0 769.23 5000 0.1266 8.5137
0.0 800.0 5200 0.1267 8.5137
0.0 830.77 5400 0.1267 8.5137
0.0 861.54 5600 0.1269 8.5137
0.0 892.31 5800 0.1269 8.5137
0.0 923.08 6000 0.1269 8.5137

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2