St4n's picture
End of training
b85d99c verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Small en - Stan
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: google/fleurs
          config: en_us
          split: None
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 8.637757947573899

Whisper Small en - Stan

This model is a fine-tuned version of openai/whisper-small on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3236
  • Wer: 8.6378

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5755 0.61 100 0.5716 8.6029
0.1769 1.23 200 0.2722 8.3659
0.1153 1.84 300 0.2791 8.7842
0.0356 2.45 400 0.2852 8.7981
0.0208 3.07 500 0.2923 8.6866
0.0105 3.68 600 0.3050 8.6517
0.0032 4.29 700 0.3126 8.6238
0.0033 4.91 800 0.3174 8.6308
0.0028 5.52 900 0.3227 8.5611
0.0017 6.13 1000 0.3236 8.6378

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2