|
--- |
|
language: |
|
- en-US |
|
license: apache-2.0 |
|
tags: |
|
- minds14 |
|
- google/xtreme_s |
|
- generated_from_trainer |
|
datasets: |
|
- xtreme_s |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: xtreme_s_xlsr_300m_minds14.en-US_2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xtreme_s_xlsr_300m_minds14.en-US_2 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MINDS14.EN-US dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5685 |
|
- F1: 0.8747 |
|
- Accuracy: 0.8759 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 50.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| |
|
| 2.6195 | 3.95 | 20 | 2.6348 | 0.0172 | 0.0816 | |
|
| 2.5925 | 7.95 | 40 | 2.6119 | 0.0352 | 0.0851 | |
|
| 2.1271 | 11.95 | 60 | 2.3066 | 0.1556 | 0.1986 | |
|
| 1.2618 | 15.95 | 80 | 1.3810 | 0.6877 | 0.7128 | |
|
| 0.5455 | 19.95 | 100 | 1.0403 | 0.6992 | 0.7270 | |
|
| 0.2571 | 23.95 | 120 | 0.8423 | 0.8160 | 0.8121 | |
|
| 0.3478 | 27.95 | 140 | 0.6500 | 0.8516 | 0.8440 | |
|
| 0.0732 | 31.95 | 160 | 0.7066 | 0.8123 | 0.8156 | |
|
| 0.1092 | 35.95 | 180 | 0.5878 | 0.8767 | 0.8759 | |
|
| 0.0271 | 39.95 | 200 | 0.5994 | 0.8578 | 0.8617 | |
|
| 0.4664 | 43.95 | 220 | 0.7830 | 0.8403 | 0.8440 | |
|
| 0.0192 | 47.95 | 240 | 0.5685 | 0.8747 | 0.8759 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|