Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- comment.txt +7 -0
- config.json +373 -0
- configuration_llama_moe.py +130 -0
- diff.patch +863 -0
- generation_config.json +7 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_llama_moe_hf.py +1690 -0
- sampling_info/100/load.pdf +0 -0
- sampling_info/100/prob_map.pdf +0 -0
- sampling_info/100/sim.pdf +0 -0
- sampling_info/1000/load.pdf +0 -0
- sampling_info/1000/prob_map.pdf +0 -0
- sampling_info/1000/sim.pdf +0 -0
- sampling_info/1100/load.pdf +0 -0
- sampling_info/1100/prob_map.pdf +0 -0
- sampling_info/1100/sim.pdf +0 -0
- sampling_info/1200/load.pdf +0 -0
- sampling_info/1200/prob_map.pdf +0 -0
- sampling_info/1200/sim.pdf +0 -0
- sampling_info/1300/load.pdf +0 -0
- sampling_info/1300/prob_map.pdf +0 -0
- sampling_info/1300/sim.pdf +0 -0
- sampling_info/1400/load.pdf +0 -0
- sampling_info/1400/prob_map.pdf +0 -0
- sampling_info/1400/sim.pdf +0 -0
- sampling_info/1500/load.pdf +0 -0
- sampling_info/1500/prob_map.pdf +0 -0
- sampling_info/1500/sim.pdf +0 -0
- sampling_info/1600/load.pdf +0 -0
- sampling_info/1600/prob_map.pdf +0 -0
- sampling_info/1600/sim.pdf +0 -0
- sampling_info/1700/load.pdf +0 -0
- sampling_info/1700/prob_map.pdf +0 -0
- sampling_info/1700/sim.pdf +0 -0
- sampling_info/1800/load.pdf +0 -0
- sampling_info/1800/prob_map.pdf +0 -0
- sampling_info/1800/sim.pdf +0 -0
- sampling_info/1900/load.pdf +0 -0
- sampling_info/1900/prob_map.pdf +0 -0
- sampling_info/1900/sim.pdf +0 -0
- sampling_info/200/load.pdf +0 -0
- sampling_info/200/prob_map.pdf +0 -0
- sampling_info/200/sim.pdf +0 -0
- sampling_info/2000/load.pdf +0 -0
- sampling_info/2000/prob_map.pdf +0 -0
- sampling_info/2000/sim.pdf +0 -0
- sampling_info/300/load.pdf +0 -0
comment.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Job ID: 2498282
|
2 |
+
|
3 |
+
Git commit: 10e3e0a update alpaca eval gen
|
4 |
+
|
5 |
+
Git branch: * main
|
6 |
+
|
7 |
+
Comment: llama_moe_four_mix_freeze_gate_100
|
config.json
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-2_8-new",
|
3 |
+
"add_weight_norm": false,
|
4 |
+
"architectures": [
|
5 |
+
"LlamaMoEForCausalLM"
|
6 |
+
],
|
7 |
+
"attention_bias": false,
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "configuration_llama_moe.LlamaMoEConfig",
|
11 |
+
"AutoModel": "modeling_llama_moe_hf.LlamaMoEModel",
|
12 |
+
"AutoModelForCausalLM": "modeling_llama_moe_hf.LlamaMoEForCausalLM"
|
13 |
+
},
|
14 |
+
"bos_token_id": 1,
|
15 |
+
"calculator_type": "UniversalCalculator",
|
16 |
+
"capacity_factor": 1.25,
|
17 |
+
"drop_tokens": true,
|
18 |
+
"dropped_padding": "zero",
|
19 |
+
"eos_token_id": 2,
|
20 |
+
"gate_add_noise": true,
|
21 |
+
"gate_balance_loss_weight": 0.01,
|
22 |
+
"gate_network": "mlp",
|
23 |
+
"gate_noise_epsilon": 0.01,
|
24 |
+
"gate_type": "TopKBalancedNoisyGate",
|
25 |
+
"gate_use_balance": true,
|
26 |
+
"gate_use_softmax": true,
|
27 |
+
"gates": "mlp",
|
28 |
+
"hidden_act": "silu",
|
29 |
+
"hidden_size": 4096,
|
30 |
+
"initializer_range": 0.02,
|
31 |
+
"intermediate_size": 11008,
|
32 |
+
"max_position_embeddings": 4096,
|
33 |
+
"model_type": "llama_moe",
|
34 |
+
"multiply_gate_scores": true,
|
35 |
+
"num_attention_heads": 32,
|
36 |
+
"num_experts": 8,
|
37 |
+
"num_hidden_layers": 32,
|
38 |
+
"num_key_value_heads": 32,
|
39 |
+
"num_selects": 2,
|
40 |
+
"pad_token_id": 0,
|
41 |
+
"pretraining_tp": 1,
|
42 |
+
"rms_norm_eps": 1e-05,
|
43 |
+
"rope_scaling": null,
|
44 |
+
"rope_theta": 10000.0,
|
45 |
+
"score_scale_factor": 4.0,
|
46 |
+
"size_experts": [
|
47 |
+
[
|
48 |
+
1376,
|
49 |
+
1376,
|
50 |
+
1376,
|
51 |
+
1376,
|
52 |
+
1376,
|
53 |
+
1376,
|
54 |
+
1376,
|
55 |
+
1376
|
56 |
+
],
|
57 |
+
[
|
58 |
+
1376,
|
59 |
+
1376,
|
60 |
+
1376,
|
61 |
+
1376,
|
62 |
+
1376,
|
63 |
+
1376,
|
64 |
+
1376,
|
65 |
+
1376
|
66 |
+
],
|
67 |
+
[
|
68 |
+
1376,
|
69 |
+
1376,
|
70 |
+
1376,
|
71 |
+
1376,
|
72 |
+
1376,
|
73 |
+
1376,
|
74 |
+
1376,
|
75 |
+
1376
|
76 |
+
],
|
77 |
+
[
|
78 |
+
1376,
|
79 |
+
1376,
|
80 |
+
1376,
|
81 |
+
1376,
|
82 |
+
1376,
|
83 |
+
1376,
|
84 |
+
1376,
|
85 |
+
1376
|
86 |
+
],
|
87 |
+
[
|
88 |
+
1376,
|
89 |
+
1376,
|
90 |
+
1376,
|
91 |
+
1376,
|
92 |
+
1376,
|
93 |
+
1376,
|
94 |
+
1376,
|
95 |
+
1376
|
96 |
+
],
|
97 |
+
[
|
98 |
+
1376,
|
99 |
+
1376,
|
100 |
+
1376,
|
101 |
+
1376,
|
102 |
+
1376,
|
103 |
+
1376,
|
104 |
+
1376,
|
105 |
+
1376
|
106 |
+
],
|
107 |
+
[
|
108 |
+
1376,
|
109 |
+
1376,
|
110 |
+
1376,
|
111 |
+
1376,
|
112 |
+
1376,
|
113 |
+
1376,
|
114 |
+
1376,
|
115 |
+
1376
|
116 |
+
],
|
117 |
+
[
|
118 |
+
1376,
|
119 |
+
1376,
|
120 |
+
1376,
|
121 |
+
1376,
|
122 |
+
1376,
|
123 |
+
1376,
|
124 |
+
1376,
|
125 |
+
1376
|
126 |
+
],
|
127 |
+
[
|
128 |
+
1376,
|
129 |
+
1376,
|
130 |
+
1376,
|
131 |
+
1376,
|
132 |
+
1376,
|
133 |
+
1376,
|
134 |
+
1376,
|
135 |
+
1376
|
136 |
+
],
|
137 |
+
[
|
138 |
+
1376,
|
139 |
+
1376,
|
140 |
+
1376,
|
141 |
+
1376,
|
142 |
+
1376,
|
143 |
+
1376,
|
144 |
+
1376,
|
145 |
+
1376
|
146 |
+
],
|
147 |
+
[
|
148 |
+
1376,
|
149 |
+
1376,
|
150 |
+
1376,
|
151 |
+
1376,
|
152 |
+
1376,
|
153 |
+
1376,
|
154 |
+
1376,
|
155 |
+
1376
|
156 |
+
],
|
157 |
+
[
|
158 |
+
1376,
|
159 |
+
1376,
|
160 |
+
1376,
|
161 |
+
1376,
|
162 |
+
1376,
|
163 |
+
1376,
|
164 |
+
1376,
|
165 |
+
1376
|
166 |
+
],
|
167 |
+
[
|
168 |
+
1376,
|
169 |
+
1376,
|
170 |
+
1376,
|
171 |
+
1376,
|
172 |
+
1376,
|
173 |
+
1376,
|
174 |
+
1376,
|
175 |
+
1376
|
176 |
+
],
|
177 |
+
[
|
178 |
+
1376,
|
179 |
+
1376,
|
180 |
+
1376,
|
181 |
+
1376,
|
182 |
+
1376,
|
183 |
+
1376,
|
184 |
+
1376,
|
185 |
+
1376
|
186 |
+
],
|
187 |
+
[
|
188 |
+
1376,
|
189 |
+
1376,
|
190 |
+
1376,
|
191 |
+
1376,
|
192 |
+
1376,
|
193 |
+
1376,
|
194 |
+
1376,
|
195 |
+
1376
|
196 |
+
],
|
197 |
+
[
|
198 |
+
1376,
|
199 |
+
1376,
|
200 |
+
1376,
|
201 |
+
1376,
|
202 |
+
1376,
|
203 |
+
1376,
|
204 |
+
1376,
|
205 |
+
1376
|
206 |
+
],
|
207 |
+
[
|
208 |
+
1376,
|
209 |
+
1376,
|
210 |
+
1376,
|
211 |
+
1376,
|
212 |
+
1376,
|
213 |
+
1376,
|
214 |
+
1376,
|
215 |
+
1376
|
216 |
+
],
|
217 |
+
[
|
218 |
+
1376,
|
219 |
+
1376,
|
220 |
+
1376,
|
221 |
+
1376,
|
222 |
+
1376,
|
223 |
+
1376,
|
224 |
+
1376,
|
225 |
+
1376
|
226 |
+
],
|
227 |
+
[
|
228 |
+
1376,
|
229 |
+
1376,
|
230 |
+
1376,
|
231 |
+
1376,
|
232 |
+
1376,
|
233 |
+
1376,
|
234 |
+
1376,
|
235 |
+
1376
|
236 |
+
],
|
237 |
+
[
|
238 |
+
1376,
|
239 |
+
1376,
|
240 |
+
1376,
|
241 |
+
1376,
|
242 |
+
1376,
|
243 |
+
1376,
|
244 |
+
1376,
|
245 |
+
1376
|
246 |
+
],
|
247 |
+
[
|
248 |
+
1376,
|
249 |
+
1376,
|
250 |
+
1376,
|
251 |
+
1376,
|
252 |
+
1376,
|
253 |
+
1376,
|
254 |
+
1376,
|
255 |
+
1376
|
256 |
+
],
|
257 |
+
[
|
258 |
+
1376,
|
259 |
+
1376,
|
260 |
+
1376,
|
261 |
+
1376,
|
262 |
+
1376,
|
263 |
+
1376,
|
264 |
+
1376,
|
265 |
+
1376
|
266 |
+
],
|
267 |
+
[
|
268 |
+
1376,
|
269 |
+
1376,
|
270 |
+
1376,
|
271 |
+
1376,
|
272 |
+
1376,
|
273 |
+
1376,
|
274 |
+
1376,
|
275 |
+
1376
|
276 |
+
],
|
277 |
+
[
|
278 |
+
1376,
|
279 |
+
1376,
|
280 |
+
1376,
|
281 |
+
1376,
|
282 |
+
1376,
|
283 |
+
1376,
|
284 |
+
1376,
|
285 |
+
1376
|
286 |
+
],
|
287 |
+
[
|
288 |
+
1376,
|
289 |
+
1376,
|
290 |
+
1376,
|
291 |
+
1376,
|
292 |
+
1376,
|
293 |
+
1376,
|
294 |
+
1376,
|
295 |
+
1376
|
296 |
+
],
|
297 |
+
[
|
298 |
+
1376,
|
299 |
+
1376,
|
300 |
+
1376,
|
301 |
+
1376,
|
302 |
+
1376,
|
303 |
+
1376,
|
304 |
+
1376,
|
305 |
+
1376
|
306 |
+
],
|
307 |
+
[
|
308 |
+
1376,
|
309 |
+
1376,
|
310 |
+
1376,
|
311 |
+
1376,
|
312 |
+
1376,
|
313 |
+
1376,
|
314 |
+
1376,
|
315 |
+
1376
|
316 |
+
],
|
317 |
+
[
|
318 |
+
1376,
|
319 |
+
1376,
|
320 |
+
1376,
|
321 |
+
1376,
|
322 |
+
1376,
|
323 |
+
1376,
|
324 |
+
1376,
|
325 |
+
1376
|
326 |
+
],
|
327 |
+
[
|
328 |
+
1376,
|
329 |
+
1376,
|
330 |
+
1376,
|
331 |
+
1376,
|
332 |
+
1376,
|
333 |
+
1376,
|
334 |
+
1376,
|
335 |
+
1376
|
336 |
+
],
|
337 |
+
[
|
338 |
+
1376,
|
339 |
+
1376,
|
340 |
+
1376,
|
341 |
+
1376,
|
342 |
+
1376,
|
343 |
+
1376,
|
344 |
+
1376,
|
345 |
+
1376
|
346 |
+
],
|
347 |
+
[
|
348 |
+
1376,
|
349 |
+
1376,
|
350 |
+
1376,
|
351 |
+
1376,
|
352 |
+
1376,
|
353 |
+
1376,
|
354 |
+
1376,
|
355 |
+
1376
|
356 |
+
],
|
357 |
+
[
|
358 |
+
1376,
|
359 |
+
1376,
|
360 |
+
1376,
|
361 |
+
1376,
|
362 |
+
1376,
|
363 |
+
1376,
|
364 |
+
1376,
|
365 |
+
1376
|
366 |
+
]
|
367 |
+
],
|
368 |
+
"tie_word_embeddings": false,
|
369 |
+
"torch_dtype": "bfloat16",
|
370 |
+
"transformers_version": "4.36.2",
|
371 |
+
"use_cache": true,
|
372 |
+
"vocab_size": 32000
|
373 |
+
}
|
configuration_llama_moe.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class LlamaMoEConfig(PretrainedConfig):
|
5 |
+
model_type = "llama_moe"
|
6 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
vocab_size=32000,
|
11 |
+
hidden_size=4096,
|
12 |
+
intermediate_size=11008,
|
13 |
+
num_hidden_layers=32,
|
14 |
+
num_attention_heads=32,
|
15 |
+
num_key_value_heads=None,
|
16 |
+
hidden_act="silu",
|
17 |
+
max_position_embeddings=2048,
|
18 |
+
initializer_range=0.02,
|
19 |
+
rms_norm_eps=1e-6,
|
20 |
+
use_cache=True,
|
21 |
+
pad_token_id=0,
|
22 |
+
bos_token_id=1,
|
23 |
+
eos_token_id=2,
|
24 |
+
pretraining_tp=1,
|
25 |
+
tie_word_embeddings=False,
|
26 |
+
rope_theta=10000.0,
|
27 |
+
rope_scaling=None,
|
28 |
+
attention_bias=False,
|
29 |
+
attention_dropout=0.0,
|
30 |
+
# -------- moe expert configs --------
|
31 |
+
num_experts=16,
|
32 |
+
num_selects=4,
|
33 |
+
size_experts=None,
|
34 |
+
# -------- moe gate configs --------
|
35 |
+
gate_type="TopKBalancedNoisyGate",
|
36 |
+
gate_network="mlp",
|
37 |
+
gate_use_softmax=True,
|
38 |
+
gate_use_balance=True,
|
39 |
+
gate_balance_loss_weight=1e-2,
|
40 |
+
gate_add_noise=True,
|
41 |
+
# TopKBalancedNoisyGate
|
42 |
+
gate_noise_epsilon=1e-2,
|
43 |
+
# -------- moe calculator configs --------
|
44 |
+
calculator_type="UniversalCalculator",
|
45 |
+
multiply_gate_scores=True,
|
46 |
+
score_scale_factor=1.0,
|
47 |
+
add_weight_norm=False,
|
48 |
+
# SwitchDropTokenCalculator
|
49 |
+
drop_tokens=True,
|
50 |
+
dropped_padding="zero",
|
51 |
+
capacity_factor=1.25,
|
52 |
+
**kwargs,
|
53 |
+
):
|
54 |
+
self.vocab_size = vocab_size
|
55 |
+
self.max_position_embeddings = max_position_embeddings
|
56 |
+
self.hidden_size = hidden_size
|
57 |
+
self.intermediate_size = intermediate_size
|
58 |
+
self.num_hidden_layers = num_hidden_layers
|
59 |
+
self.num_attention_heads = num_attention_heads
|
60 |
+
self.hidden_act = hidden_act
|
61 |
+
self.initializer_range = initializer_range
|
62 |
+
self.rms_norm_eps = rms_norm_eps
|
63 |
+
self.pretraining_tp = pretraining_tp
|
64 |
+
self.use_cache = use_cache
|
65 |
+
self.rope_theta = rope_theta
|
66 |
+
self.rope_scaling = rope_scaling
|
67 |
+
self._rope_scaling_validation()
|
68 |
+
self.attention_bias = attention_bias
|
69 |
+
self.attention_dropout = attention_dropout
|
70 |
+
|
71 |
+
self.num_experts = num_experts
|
72 |
+
self.num_selects = num_selects
|
73 |
+
self.size_experts = size_experts
|
74 |
+
|
75 |
+
self.gate_type = gate_type
|
76 |
+
self.gate_network = gate_network
|
77 |
+
self.gate_use_softmax = gate_use_softmax
|
78 |
+
self.gate_use_balance = gate_use_balance
|
79 |
+
self.gate_balance_loss_weight = gate_balance_loss_weight
|
80 |
+
self.gate_add_noise = gate_add_noise
|
81 |
+
self.gate_noise_epsilon = gate_noise_epsilon
|
82 |
+
|
83 |
+
self.calculator_type = calculator_type
|
84 |
+
self.multiply_gate_scores = multiply_gate_scores
|
85 |
+
self.score_scale_factor = score_scale_factor
|
86 |
+
self.add_weight_norm = add_weight_norm
|
87 |
+
self.drop_tokens = drop_tokens
|
88 |
+
self.dropped_padding = dropped_padding
|
89 |
+
self.capacity_factor = capacity_factor
|
90 |
+
|
91 |
+
# for backward compatibility
|
92 |
+
if num_key_value_heads is None:
|
93 |
+
num_key_value_heads = num_attention_heads
|
94 |
+
|
95 |
+
self.num_key_value_heads = num_key_value_heads
|
96 |
+
|
97 |
+
super().__init__(
|
98 |
+
pad_token_id=pad_token_id,
|
99 |
+
bos_token_id=bos_token_id,
|
100 |
+
eos_token_id=eos_token_id,
|
101 |
+
tie_word_embeddings=tie_word_embeddings,
|
102 |
+
**kwargs,
|
103 |
+
)
|
104 |
+
|
105 |
+
def _rope_scaling_validation(self):
|
106 |
+
"""
|
107 |
+
Validate the `rope_scaling` configuration.
|
108 |
+
"""
|
109 |
+
if self.rope_scaling is None:
|
110 |
+
return
|
111 |
+
|
112 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
113 |
+
raise ValueError(
|
114 |
+
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
|
115 |
+
f"got {self.rope_scaling}"
|
116 |
+
)
|
117 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
118 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
119 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
120 |
+
raise ValueError(
|
121 |
+
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
122 |
+
)
|
123 |
+
if (
|
124 |
+
rope_scaling_factor is None
|
125 |
+
or not isinstance(rope_scaling_factor, float)
|
126 |
+
or rope_scaling_factor <= 1.0
|
127 |
+
):
|
128 |
+
raise ValueError(
|
129 |
+
f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}"
|
130 |
+
)
|
diff.patch
ADDED
@@ -0,0 +1,863 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diff --git a/.gitignore b/.gitignore
|
2 |
+
index c243024..8c28ce3 100644
|
3 |
+
--- a/.gitignore
|
4 |
+
+++ b/.gitignore
|
5 |
+
@@ -175,6 +175,7 @@ debug.py
|
6 |
+
wandb/
|
7 |
+
nohup.out
|
8 |
+
lm-evaluation-harness/
|
9 |
+
+bigcode-evaluation-harness/
|
10 |
+
results/**/*.json
|
11 |
+
results/**/*.jsonl
|
12 |
+
results/**/*.db
|
13 |
+
diff --git a/README.md b/README.md
|
14 |
+
index 8813a32..b276a78 100644
|
15 |
+
--- a/README.md
|
16 |
+
+++ b/README.md
|
17 |
+
@@ -26,6 +26,11 @@ bash scripts/data.sh
|
18 |
+
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
|
19 |
+
cd lm-evaluation-harness
|
20 |
+
pip install -e .
|
21 |
+
+# commit: 9cfa52b
|
22 |
+
+git clone https://github.com/bigcode-project/bigcode-evaluation-harness.git
|
23 |
+
+cd bigcode-evaluation-harness
|
24 |
+
+# change `pyext==0.5` in `bigcode-evaluation-harness/requirements.txt`, ref: https://github.com/bigcode-project/bigcode-evaluation-harness/pull/181
|
25 |
+
+pip install -e .
|
26 |
+
```
|
27 |
+
|
28 |
+
## 📃 TODO
|
29 |
+
diff --git a/scripts/eval.sh b/scripts/eval.sh
|
30 |
+
deleted file mode 100644
|
31 |
+
index 4f41b37..0000000
|
32 |
+
--- a/scripts/eval.sh
|
33 |
+
+++ /dev/null
|
34 |
+
@@ -1,96 +0,0 @@
|
35 |
+
-# nohup srun -p MoE --gres gpu:1 bash scripts/eval.sh all /mnt/petrelfs/share_data/quxiaoye/models/Sheared-LLaMA-2.7B True results/Sheared-LLaMA-2.7B 1>logs/eval-all-Sheared-LLaMA-2.7B.log 2>&1 &
|
36 |
+
-
|
37 |
+
-mmlu() {
|
38 |
+
- # MMLU: https://github.com/princeton-nlp/LLM-Shearing/blob/20ebd2645a8ff5fa65874e1347f9891b80e01805/icl_eval/run_eval.sh#L18
|
39 |
+
- MODEL=$1
|
40 |
+
- TRUST_REMOTE_CODE=$2
|
41 |
+
- RESULT_DIR=$3
|
42 |
+
- mkdir -p $RESULT_DIR
|
43 |
+
-
|
44 |
+
- lm_eval \
|
45 |
+
- --model hf \
|
46 |
+
- --model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
|
47 |
+
- --tasks mmlu_computer_security,mmlu_high_school_chemistry,mmlu_philosophy,mmlu_elementary_mathematics,mmlu_prehistory,mmlu_formal_logic,mmlu_high_school_mathematics,mmlu_econometrics,mmlu_moral_scenarios,mmlu_college_mathematics,mmlu_high_school_government_and_politics,mmlu_us_foreign_policy,mmlu_high_school_world_history,mmlu_conceptual_physics,mmlu_college_medicine,mmlu_international_law,mmlu_abstract_algebra,mmlu_logical_fallacies,mmlu_machine_learning,mmlu_medical_genetics,mmlu_public_relations,mmlu_college_biology,mmlu_marketing,mmlu_electrical_engineering,mmlu_anatomy,mmlu_high_school_us_history,mmlu_high_school_biology,mmlu_miscellaneous,mmlu_high_school_psychology,mmlu_sociology,mmlu_business_ethics,mmlu_high_school_geography,mmlu_human_aging,mmlu_high_school_statistics,mmlu_moral_disputes,mmlu_professional_psychology,mmlu_global_facts,mmlu_college_physics,mmlu_nutrition,mmlu_high_school_macroeconomics,mmlu_world_religions,mmlu_professional_medicine,mmlu_high_school_computer_science,mmlu_college_chemistry,mmlu_human_sexuality,mmlu_high_school_microeconomics,mmlu_astronomy,mmlu_professional_accounting,mmlu_high_school_european_history,mmlu_jurisprudence,mmlu_professional_law,mmlu_high_school_physics,mmlu_virology,mmlu_management,mmlu_college_computer_science,mmlu_clinical_knowledge,mmlu_security_studies \
|
48 |
+
- --num_fewshot 5 \
|
49 |
+
- --device cuda:0 \
|
50 |
+
- --batch_size auto \
|
51 |
+
- --verbosity DEBUG \
|
52 |
+
- --output_path $RESULT_DIR/mmlu.json
|
53 |
+
-}
|
54 |
+
-
|
55 |
+
-bbh() {
|
56 |
+
- # Big Bench Hard (BBH): https://arxiv.org/pdf/2210.09261.pdf
|
57 |
+
- MODEL=$1
|
58 |
+
- TRUST_REMOTE_CODE=$2
|
59 |
+
- RESULT_DIR=$3
|
60 |
+
- mkdir -p $RESULT_DIR
|
61 |
+
-
|
62 |
+
- lm_eval \
|
63 |
+
- --log_samples \
|
64 |
+
- --model hf \
|
65 |
+
- --model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
|
66 |
+
- --tasks bbh_fewshot_boolean_expressions,bbh_fewshot_causal_judgement,bbh_fewshot_date_understanding,bbh_fewshot_disambiguation_qa,bbh_fewshot_dyck_languages,bbh_fewshot_formal_fallacies,bbh_fewshot_geometric_shapes,bbh_fewshot_hyperbaton,bbh_fewshot_logical_deduction_five_objects,bbh_fewshot_logical_deduction_seven_objects,bbh_fewshot_logical_deduction_three_objects,bbh_fewshot_movie_recommendation,bbh_fewshot_multistep_arithmetic_two,bbh_fewshot_navigate,bbh_fewshot_object_counting,bbh_fewshot_penguins_in_a_table,bbh_fewshot_reasoning_about_colored_objects,bbh_fewshot_ruin_names,bbh_fewshot_salient_translation_error_detection,bbh_fewshot_snarks,bbh_fewshot_sports_understanding,bbh_fewshot_temporal_sequences,bbh_fewshot_tracking_shuffled_objects_five_objects,bbh_fewshot_tracking_shuffled_objects_seven_objects,bbh_fewshot_tracking_shuffled_objects_three_objects,bbh_fewshot_web_of_lies,bbh_fewshot_word_sorting \
|
67 |
+
- --device cuda:0 \
|
68 |
+
- --batch_size auto \
|
69 |
+
- --verbosity DEBUG \
|
70 |
+
- --output_path $RESULT_DIR/bbh.json
|
71 |
+
-}
|
72 |
+
-
|
73 |
+
-reasoning() {
|
74 |
+
- MODEL=$1
|
75 |
+
- TRUST_REMOTE_CODE=$2
|
76 |
+
- RESULT_DIR=$3
|
77 |
+
- mkdir -p $RESULT_DIR
|
78 |
+
-
|
79 |
+
- lm_eval \
|
80 |
+
- --log_samples \
|
81 |
+
- --model hf \
|
82 |
+
- --model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
|
83 |
+
- --tasks gsm8k_cot \
|
84 |
+
- --device cuda:0 \
|
85 |
+
- --batch_size auto \
|
86 |
+
- --verbosity DEBUG \
|
87 |
+
- --output_path $RESULT_DIR/reasoning.json
|
88 |
+
-}
|
89 |
+
-
|
90 |
+
-qa() {
|
91 |
+
- MODEL=$1
|
92 |
+
- TRUST_REMOTE_CODE=$2
|
93 |
+
- RESULT_DIR=$3
|
94 |
+
- mkdir -p $RESULT_DIR
|
95 |
+
-
|
96 |
+
- lm_eval \
|
97 |
+
- --log_samples \
|
98 |
+
- --model hf \
|
99 |
+
- --model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
|
100 |
+
- --tasks arc_easy,arc_challenge,boolq \
|
101 |
+
- --num_fewshot 0 \
|
102 |
+
- --device cuda:0 \
|
103 |
+
- --batch_size auto \
|
104 |
+
- --verbosity DEBUG \
|
105 |
+
- --output_path $RESULT_DIR/qa.json
|
106 |
+
-}
|
107 |
+
-
|
108 |
+
-EVAL_TASK=$1
|
109 |
+
-shift 1
|
110 |
+
-start=$(date +%s)
|
111 |
+
-case $EVAL_TASK in
|
112 |
+
- mmlu)
|
113 |
+
- mmlu $* ;;
|
114 |
+
- bbh)
|
115 |
+
- bbh $* ;;
|
116 |
+
- reasoning)
|
117 |
+
- reasoning $* ;;
|
118 |
+
- qa)
|
119 |
+
- qa $* ;;
|
120 |
+
- all)
|
121 |
+
- mmlu $*
|
122 |
+
- bbh $*
|
123 |
+
- reasoning $*
|
124 |
+
- qa $*
|
125 |
+
- ;;
|
126 |
+
- *)
|
127 |
+
- echo "$EVAL_TASK not recognized!";;
|
128 |
+
-esac
|
129 |
+
-end=$(date +%s)
|
130 |
+
-echo "Elapsed Time: $(($end-$start)) seconds"
|
131 |
+
diff --git a/scripts/four_mix/freeze_gate.sh b/scripts/four_mix/freeze_gate.sh
|
132 |
+
index d94d78c..70afb8e 100644
|
133 |
+
--- a/scripts/four_mix/freeze_gate.sh
|
134 |
+
+++ b/scripts/four_mix/freeze_gate.sh
|
135 |
+
@@ -83,8 +83,11 @@ num_gpus=4
|
136 |
+
|
137 |
+
python -m src.eval.gen_mt_ans \
|
138 |
+
--model-path $output_dir \
|
139 |
+
- --model-id $task_name \
|
140 |
+
- --num-gpus-total $num_gpus
|
141 |
+
+ --model-id $task_name
|
142 |
+
+
|
143 |
+
+ python -m src.eval.gen_alpaca_eval_ans \
|
144 |
+
+ --model-path $output_dir \
|
145 |
+
+ --model-id $task_name
|
146 |
+
}
|
147 |
+
|
148 |
+
# nohup srun -p MoE --ntasks-per-node=1 --cpus-per-task=16 --mem=128G --nodes=1 --gres=gpu:4 bash "/mnt/petrelfs/zhutong/adaptive-sft-for-moe/scripts/one_data_steps_dynamic.sh" "llama_moe_orca_epochs_cluster_4" "auto" "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-2_8-new" "data/open_orca_clustered/4" "data/open_orca_clustered_eval/4" 1>logs/llama_moe_orca_cluster_4_dynamic.log 2>&1 &
|
149 |
+
diff --git a/scripts/gen_mt_bench_ans.sh b/scripts/gen_mt_bench_ans.sh
|
150 |
+
deleted file mode 100644
|
151 |
+
index f251644..0000000
|
152 |
+
--- a/scripts/gen_mt_bench_ans.sh
|
153 |
+
+++ /dev/null
|
154 |
+
@@ -1,32 +0,0 @@
|
155 |
+
-#!/usr/bin/bash
|
156 |
+
-
|
157 |
+
-#SBATCH --job-name=moe_gen
|
158 |
+
-#SBATCH --output=logs/%x-%j.log
|
159 |
+
-#SBATCH --error=logs/%x-%j.log
|
160 |
+
-
|
161 |
+
-#SBATCH --partition=MoE
|
162 |
+
-#SBATCH --ntasks-per-node=1
|
163 |
+
-#SBATCH --cpus-per-task=16
|
164 |
+
-#SBATCH --mem=64G
|
165 |
+
-
|
166 |
+
-#SBATCH --nodes=1
|
167 |
+
-#SBATCH --gres=gpu:1
|
168 |
+
-#SBATCH --quotatype=auto
|
169 |
+
-
|
170 |
+
-{
|
171 |
+
- # python -m fastchat.llm_judge.gen_model_answer \
|
172 |
+
- # --model-path outputs/sheared_llama_sharegpt/moe_sft-2411306 \
|
173 |
+
- # --model-id sheared_llama_sharegpt
|
174 |
+
-
|
175 |
+
- # python -m fastchat.llm_judge.gen_model_answer \
|
176 |
+
- # --model-path outputs/sheared_llama_uniform_mix/moe_sft-2421072 \
|
177 |
+
- # --model-id sheared_llama_uniform_mix
|
178 |
+
-
|
179 |
+
- bash scripts/cp_model_files.sh outputs/llama_moe/moe_sft-2409782
|
180 |
+
- python -m fastchat.llm_judge.gen_model_answer \
|
181 |
+
- --model-path outputs/llama_moe/moe_sft-2409782 \
|
182 |
+
- --model-id llama_moe_uniform_mix
|
183 |
+
-}
|
184 |
+
-
|
185 |
+
-# nohup srun -p MoE -n1 -N1 --gres=gpu:1 --quotatype spot python -m fastchat.llm_judge.gen_model_answer --model-path outputs/sheared_llama_sharegpt/moe_sft-2411306 --model-id sheared_llama_sharegpt 1>logs/mt_bench_gen_sheared_llama_sharegpt.log 2>&1 &
|
186 |
+
-# nohup srun -p MoE -n1 -N1 --gres=gpu:1 --quotatype spot python -m fastchat.llm_judge.gen_model_answer --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/llama_moe_sharegpt/moe_sft-2411309 --model-id llama_moe_sharegpt 1>logs/mt_bench_gen_llama_moe_sharegpt.log 2>&1 &
|
187 |
+
diff --git a/scripts/multi.sh b/scripts/multi.sh
|
188 |
+
index bcd83b8..e399761 100644
|
189 |
+
--- a/scripts/multi.sh
|
190 |
+
+++ b/scripts/multi.sh
|
191 |
+
@@ -100,5 +100,8 @@ nohup srun -p MoE --ntasks-per-node=1 --cpus-per-task=16 --mem=128G --nodes=1 --
|
192 |
+
nohup srun -p MoE --gres gpu:1 python -m src.eval.gen_mt_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/llama_moe_four_mix_uniform/bash-2485396 --model-id llama_moe_four_mix_uniform 1>logs/gen_mt_ans-llama_moe_four_mix_uniform.log 2>&1 &
|
193 |
+
nohup srun -p MoE --gres gpu:1 python -m src.eval.gen_mt_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/sheared_four_mix_uniform/bash-2485397 --model-id sheared_four_mix_uniform 1>logs/gen_mt_ans-sheared_four_mix_uniform.log 2>&1 &
|
194 |
+
|
195 |
+
-nohup srun -p MoE --gres gpu:1 python -m src.eval.get_alpaca_eval_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/llama_moe_four_mix_uniform/bash-2485396 --model-id llama_moe_four_mix_uniform 1>logs/gen_alpaca_eval-llama_moe_four_mix_uniform.log 2>&1 &
|
196 |
+
-nohup srun -p MoE --gres gpu:1 python -m src.eval.get_alpaca_eval_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/sheared_four_mix_uniform/bash-2485397 --model-id sheared_four_mix_uniform 1>logs/gen_alpaca_eval-sheared_four_mix_uniform.log 2>&1 &
|
197 |
+
+nohup srun -p MoE --gres gpu:1 python -m src.eval.gen_alpaca_eval_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/llama_moe_four_mix_uniform/bash-2485396 --model-id llama_moe_four_mix_uniform 1>logs/gen_alpaca_eval-llama_moe_four_mix_uniform.log 2>&1 &
|
198 |
+
+nohup srun -p MoE --gres gpu:1 python -m src.eval.gen_alpaca_eval_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/sheared_four_mix_uniform/bash-2485397 --model-id sheared_four_mix_uniform 1>logs/gen_alpaca_eval-sheared_four_mix_uniform.log 2>&1 &
|
199 |
+
+
|
200 |
+
+nohup srun -p MoE --gres gpu:1 bash scripts/eval/eval.sh reasoning /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad_wo_gate_noise/moe_sft-2492650 True results/llama_moe_four_mix_wo_pad_wo_gate_noise 1>logs/eval-reasoning-llama_moe_four_mix_wo_pad_wo_gate_noise.log 2>&1 &
|
201 |
+
+nohup srun -p MoE --gres gpu:1 bash scripts/eval/eval.sh reasoning /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad/moe_sft-2491633 True results/llama_moe_four_mix_wo_pad 1>logs/eval-reasoning-llama_moe_four_mix_wo_pad.log 2>&1 &
|
202 |
+
diff --git a/src/callbacks.py b/src/callbacks.py
|
203 |
+
index a750f69..e9d0c04 100644
|
204 |
+
--- a/src/callbacks.py
|
205 |
+
+++ b/src/callbacks.py
|
206 |
+
@@ -6,6 +6,7 @@ import torch
|
207 |
+
import numpy as np
|
208 |
+
from loguru import logger
|
209 |
+
from transformers.trainer_callback import TrainerCallback, TrainerState, TrainerControl
|
210 |
+
+from transformers.utils import is_flash_attn_2_available
|
211 |
+
|
212 |
+
from src.utils.config import TrainingArguments
|
213 |
+
from src.utils.io import append_jsonlines
|
214 |
+
@@ -22,6 +23,7 @@ class AdaptiveSamplingCallback(TrainerCallback):
|
215 |
+
criterion: Optional[Literal["min", "max", "mean"]] = "mean",
|
216 |
+
sim_type: Optional[Literal["cos", "l2"]] = "cos",
|
217 |
+
):
|
218 |
+
+ assert is_flash_attn_2_available(), "Make sure you have flash-attn installed"
|
219 |
+
self.criterion = criterion
|
220 |
+
self.sim_type = sim_type
|
221 |
+
self.prob_map = {}
|
222 |
+
@@ -74,8 +76,8 @@ class AdaptiveSamplingCallback(TrainerCallback):
|
223 |
+
cls,
|
224 |
+
ori_weights: np.ndarray,
|
225 |
+
delta: np.ndarray,
|
226 |
+
- eta: float = 1.0,
|
227 |
+
- c: float = 1e-4,
|
228 |
+
+ eta: float = 10.0,
|
229 |
+
+ c: float = 5e-2,
|
230 |
+
) -> np.ndarray:
|
231 |
+
def _softmax(vec: np.ndarray) -> np.ndarray:
|
232 |
+
exps = np.exp(vec - np.max(vec))
|
233 |
+
diff --git a/src/core/train.py b/src/core/train.py
|
234 |
+
index 2be5558..9b1f694 100644
|
235 |
+
--- a/src/core/train.py
|
236 |
+
+++ b/src/core/train.py
|
237 |
+
@@ -7,13 +7,12 @@ from loguru import logger
|
238 |
+
from src.utils.config import ModelArguments, DataArguments, TrainingArguments
|
239 |
+
from src.data import (
|
240 |
+
SubDirWeightedPackedJsonlDataset,
|
241 |
+
- get_uniform_sampling_ratio,
|
242 |
+
fault_tolerance_data_collator,
|
243 |
+
CachedJsonlDataset,
|
244 |
+
get_cached_datasets_from_dir,
|
245 |
+
)
|
246 |
+
from src.utils.io import trainer_save_model_safe
|
247 |
+
-from src.models import LlamaMoEForCausalLM, LlamaMoEConfig
|
248 |
+
+from src.models import LlamaMoEForCausalLM, LlamaMoEConfig, DeepseekConfig, DeepseekForCausalLM
|
249 |
+
from src.trainer import GateLoadRecordingTrainer
|
250 |
+
from src.callbacks import AdaptiveSamplingCallback
|
251 |
+
|
252 |
+
@@ -36,6 +35,9 @@ def get_model_and_tokenizer(
|
253 |
+
elif model_type == "llama_moe":
|
254 |
+
ConfigClass = LlamaMoEConfig
|
255 |
+
ModelClass = LlamaMoEForCausalLM
|
256 |
+
+ elif model_type == "deepseek":
|
257 |
+
+ ConfigClass = DeepseekConfig
|
258 |
+
+ ModelClass = DeepseekForCausalLM
|
259 |
+
else:
|
260 |
+
raise ValueError(f"Unknown model type: {model_type}")
|
261 |
+
|
262 |
+
@@ -54,6 +56,21 @@ def get_model_and_tokenizer(
|
263 |
+
config.update(additional_config)
|
264 |
+
logger.info("Config ready")
|
265 |
+
|
266 |
+
+ tokenizer = transformers.AutoTokenizer.from_pretrained(
|
267 |
+
+ model_name_or_path,
|
268 |
+
+ cache_dir=cache_dir,
|
269 |
+
+ model_max_length=model_max_length,
|
270 |
+
+ padding_side=padding_side,
|
271 |
+
+ use_fast=False,
|
272 |
+
+ trust_remote_code=trust_remote_code,
|
273 |
+
+ )
|
274 |
+
+ if tokenizer.pad_token is None:
|
275 |
+
+ if tokenizer.unk_token is not None:
|
276 |
+
+ tokenizer.pad_token = tokenizer.unk_token
|
277 |
+
+ else:
|
278 |
+
+ tokenizer.pad_token = tokenizer.eos_token
|
279 |
+
+ logger.info(f"tokenizer ready, pad_token: {tokenizer.pad_token}")
|
280 |
+
+
|
281 |
+
# Load model and tokenizer
|
282 |
+
model = ModelClass.from_pretrained(
|
283 |
+
model_name_or_path,
|
284 |
+
@@ -65,18 +82,6 @@ def get_model_and_tokenizer(
|
285 |
+
)
|
286 |
+
logger.info("model ready")
|
287 |
+
|
288 |
+
- tokenizer = transformers.AutoTokenizer.from_pretrained(
|
289 |
+
- model_name_or_path,
|
290 |
+
- cache_dir=cache_dir,
|
291 |
+
- model_max_length=model_max_length,
|
292 |
+
- padding_side=padding_side,
|
293 |
+
- use_fast=False,
|
294 |
+
- trust_remote_code=trust_remote_code,
|
295 |
+
- )
|
296 |
+
- if tokenizer.pad_token != tokenizer.unk_token:
|
297 |
+
- tokenizer.pad_token = tokenizer.unk_token
|
298 |
+
- logger.info("tokenizer ready")
|
299 |
+
-
|
300 |
+
return model, tokenizer
|
301 |
+
|
302 |
+
|
303 |
+
@@ -117,7 +122,9 @@ def train():
|
304 |
+
train_dataset = SubDirWeightedPackedJsonlDataset(
|
305 |
+
data_args.dataset_dir_or_path,
|
306 |
+
tokenizer,
|
307 |
+
- prob_map=get_uniform_sampling_ratio(data_args.dataset_dir_or_path),
|
308 |
+
+ # prob_map=get_uniform_sampling_ratio(data_args.dataset_dir_or_path),
|
309 |
+
+ # prob_map={"code": 0.25119094959816823, "math": 0.2674581878910902, "orca": 0.243050776175138, "sharegpt": 0.23830008633560357},
|
310 |
+
+ prob_map=data_args.prob_map,
|
311 |
+
seed=training_args.seed,
|
312 |
+
)
|
313 |
+
elif datapath.is_file():
|
314 |
+
diff --git a/src/data.py b/src/data.py
|
315 |
+
index d783a21..a1a8ff7 100644
|
316 |
+
--- a/src/data.py
|
317 |
+
+++ b/src/data.py
|
318 |
+
@@ -20,6 +20,7 @@ def preprocess(
|
319 |
+
instances,
|
320 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
321 |
+
) -> Dict:
|
322 |
+
+ tokenizer_legacy = getattr(tokenizer, "legacy", None)
|
323 |
+
conv = Conversation()
|
324 |
+
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
325 |
+
|
326 |
+
@@ -72,7 +73,7 @@ def preprocess(
|
327 |
+
# "-2" is hardcoded for the Llama tokenizer to make the offset correct.
|
328 |
+
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
|
329 |
+
|
330 |
+
- if i != 0 and not tokenizer.legacy:
|
331 |
+
+ if i != 0 and not tokenizer_legacy:
|
332 |
+
# The legacy and non-legacy modes handle special tokens differently
|
333 |
+
instruction_len -= 1
|
334 |
+
|
335 |
+
@@ -80,7 +81,7 @@ def preprocess(
|
336 |
+
target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID
|
337 |
+
cur_len += turn_len
|
338 |
+
|
339 |
+
- if i != 0 and not tokenizer.legacy:
|
340 |
+
+ if i != 0 and not tokenizer_legacy:
|
341 |
+
# The legacy and non-legacy modes handle special tokens differently
|
342 |
+
cur_len -= 1
|
343 |
+
|
344 |
+
diff --git a/src/eval/get_alpaca_eval_ans.py b/src/eval/get_alpaca_eval_ans.py
|
345 |
+
deleted file mode 100644
|
346 |
+
index 1ff3e5e..0000000
|
347 |
+
--- a/src/eval/get_alpaca_eval_ans.py
|
348 |
+
+++ /dev/null
|
349 |
+
@@ -1,113 +0,0 @@
|
350 |
+
-import argparse
|
351 |
+
-from pathlib import Path
|
352 |
+
-
|
353 |
+
-import torch
|
354 |
+
-import datasets
|
355 |
+
-from tqdm import tqdm
|
356 |
+
-
|
357 |
+
-from src.core.train import get_model_and_tokenizer
|
358 |
+
-from src.utils.conversation import Conversation
|
359 |
+
-from src.utils.io import dump_json
|
360 |
+
-
|
361 |
+
-
|
362 |
+
-@torch.inference_mode()
|
363 |
+
-def run_eval(model_path, model_id, max_new_tokens):
|
364 |
+
- model, tokenizer = get_model_and_tokenizer(
|
365 |
+
- "auto",
|
366 |
+
- model_path,
|
367 |
+
- torch_dtype=torch.bfloat16,
|
368 |
+
- trust_remote_code=True,
|
369 |
+
- )
|
370 |
+
- model.cuda()
|
371 |
+
- model.eval()
|
372 |
+
-
|
373 |
+
- conv = Conversation()
|
374 |
+
- outputs = []
|
375 |
+
- eval_set = datasets.load_dataset("tatsu-lab/alpaca_eval", "alpaca_eval")["eval"]
|
376 |
+
- for example in tqdm(eval_set, desc="Eval"):
|
377 |
+
- conv.append_message(conv.roles[0], example["instruction"])
|
378 |
+
- conv.append_message(conv.roles[1], None)
|
379 |
+
- prompt = conv.get_prompt()
|
380 |
+
- input_ids = tokenizer([prompt], return_tensors="pt").input_ids
|
381 |
+
- conv.clear_msg()
|
382 |
+
- # generate here is a placeholder for your models generations
|
383 |
+
- output_ids = model.generate(
|
384 |
+
- input_ids.cuda(),
|
385 |
+
- do_sample=False,
|
386 |
+
- temperature=0.0,
|
387 |
+
- max_new_tokens=max_new_tokens,
|
388 |
+
- )
|
389 |
+
- if model.config.is_encoder_decoder:
|
390 |
+
- output_ids = output_ids[0]
|
391 |
+
- else:
|
392 |
+
- output_ids = output_ids[0][len(input_ids[0]) :] # noqa: E203
|
393 |
+
- # be consistent with the template's stop_token_ids
|
394 |
+
- if conv.stop_token_ids:
|
395 |
+
- stop_token_ids_index = [
|
396 |
+
- i
|
397 |
+
- for i, id in enumerate(output_ids)
|
398 |
+
- if id in conv.stop_token_ids
|
399 |
+
- ]
|
400 |
+
- if len(stop_token_ids_index) > 0:
|
401 |
+
- output_ids = output_ids[: stop_token_ids_index[0]]
|
402 |
+
-
|
403 |
+
- output = tokenizer.decode(
|
404 |
+
- output_ids,
|
405 |
+
- spaces_between_special_tokens=False,
|
406 |
+
- )
|
407 |
+
- if conv.stop_str and isinstance(conv.stop_str, list):
|
408 |
+
- stop_str_indices = sorted(
|
409 |
+
- [
|
410 |
+
- output.find(stop_str)
|
411 |
+
- for stop_str in conv.stop_str
|
412 |
+
- if output.find(stop_str) > 0
|
413 |
+
- ]
|
414 |
+
- )
|
415 |
+
- if len(stop_str_indices) > 0:
|
416 |
+
- output = output[: stop_str_indices[0]]
|
417 |
+
- elif conv.stop_str and output.find(conv.stop_str) > 0:
|
418 |
+
- output = output[: output.find(conv.stop_str)]
|
419 |
+
-
|
420 |
+
- for special_token in tokenizer.special_tokens_map.values():
|
421 |
+
- if isinstance(special_token, list):
|
422 |
+
- for special_tok in special_token:
|
423 |
+
- output = output.replace(special_tok, "")
|
424 |
+
- else:
|
425 |
+
- output = output.replace(special_token, "")
|
426 |
+
- output = output.strip()
|
427 |
+
-
|
428 |
+
- if conv.name == "xgen" and output.startswith("Assistant:"):
|
429 |
+
- output = output.replace("Assistant:", "", 1).strip()
|
430 |
+
-
|
431 |
+
- example["output"] = output
|
432 |
+
- outputs.append(example)
|
433 |
+
-
|
434 |
+
- outpath = Path("results/alpaca_eval") / f"{model_id}.json"
|
435 |
+
- dump_json(outputs, outpath, indent=2)
|
436 |
+
-
|
437 |
+
-
|
438 |
+
-if __name__ == "__main__":
|
439 |
+
- parser = argparse.ArgumentParser()
|
440 |
+
- parser.add_argument(
|
441 |
+
- "--model-path",
|
442 |
+
- type=str,
|
443 |
+
- required=True,
|
444 |
+
- help="The path to the weights. This can be a local folder or a Hugging Face repo ID.",
|
445 |
+
- )
|
446 |
+
- parser.add_argument(
|
447 |
+
- "--model-id", type=str, required=True, help="A custom name for the model."
|
448 |
+
- )
|
449 |
+
- parser.add_argument(
|
450 |
+
- "--max-new-token",
|
451 |
+
- type=int,
|
452 |
+
- default=1024,
|
453 |
+
- help="The maximum number of new generated tokens.",
|
454 |
+
- )
|
455 |
+
-
|
456 |
+
- args = parser.parse_args()
|
457 |
+
-
|
458 |
+
- run_eval(
|
459 |
+
- model_path=args.model_path,
|
460 |
+
- model_id=args.model_id,
|
461 |
+
- max_new_tokens=args.max_new_token,
|
462 |
+
- )
|
463 |
+
diff --git a/src/eval/show.py b/src/eval/show.py
|
464 |
+
index d500054..ea0c210 100644
|
465 |
+
--- a/src/eval/show.py
|
466 |
+
+++ b/src/eval/show.py
|
467 |
+
@@ -55,13 +55,13 @@ def collect_results(result_dir: str, verbose: bool = True) -> dict:
|
468 |
+
avg = sum(vals) / len(vals)
|
469 |
+
tot_vals.append(avg)
|
470 |
+
if verbose:
|
471 |
+
- logger.info(f"task: {name}, num: {len(tasks.split(','))}, avg: {avg:.3%}")
|
472 |
+
+ logger.info(f"task: {name}, num: {len(tasks.split(','))}, avg: {100 * avg:.3f} %")
|
473 |
+
|
474 |
+
if len(tot_vals) == 0:
|
475 |
+
tot_avg = 0.0
|
476 |
+
else:
|
477 |
+
tot_avg = sum(tot_vals) / len(tot_vals)
|
478 |
+
- logger.info(f"total avg: {tot_avg:.3%}")
|
479 |
+
+ logger.info(f"total avg: {100 * tot_avg:.3f} %")
|
480 |
+
|
481 |
+
|
482 |
+
if __name__ == "__main__":
|
483 |
+
diff --git a/src/models/deepseek/modeling_deepseek.py b/src/models/deepseek/modeling_deepseek.py
|
484 |
+
index 1dae56e..20498b2 100644
|
485 |
+
--- a/src/models/deepseek/modeling_deepseek.py
|
486 |
+
+++ b/src/models/deepseek/modeling_deepseek.py
|
487 |
+
@@ -20,6 +20,7 @@
|
488 |
+
""" PyTorch DeepSeek model."""
|
489 |
+
import math
|
490 |
+
import warnings
|
491 |
+
+from dataclasses import dataclass
|
492 |
+
from typing import List, Optional, Tuple, Union
|
493 |
+
|
494 |
+
import torch
|
495 |
+
@@ -297,7 +298,7 @@ class DeepseekMLP(nn.Module):
|
496 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
497 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
498 |
+
|
499 |
+
- def forward(self, x):
|
500 |
+
+ def forward(self, x, **kwargs):
|
501 |
+
if self.config.pretraining_tp > 1:
|
502 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
503 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
504 |
+
@@ -328,7 +329,9 @@ class DeepseekMLP(nn.Module):
|
505 |
+
else:
|
506 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
507 |
+
|
508 |
+
- return down_proj
|
509 |
+
+ bsz, seq_len, _ = x.shape
|
510 |
+
+ load = torch.zeros(bsz * seq_len, self.config.n_routed_experts)
|
511 |
+
+ return down_proj, load
|
512 |
+
|
513 |
+
|
514 |
+
class MoEGate(nn.Module):
|
515 |
+
@@ -356,7 +359,10 @@ class MoEGate(nn.Module):
|
516 |
+
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
517 |
+
|
518 |
+
def forward(self, hidden_states):
|
519 |
+
- bsz, seq_len, h = hidden_states.shape
|
520 |
+
+ if len(hidden_states.shape) == 2:
|
521 |
+
+ bsz, h = hidden_states.shape
|
522 |
+
+ else:
|
523 |
+
+ bsz, seq_len, h = hidden_states.shape
|
524 |
+
### compute gating score
|
525 |
+
hidden_states = hidden_states.view(-1, h)
|
526 |
+
logits = F.linear(hidden_states, self.weight, None)
|
527 |
+
@@ -404,7 +410,10 @@ class MoEGate(nn.Module):
|
528 |
+
aux_loss = (Pi * fi).sum() * self.alpha
|
529 |
+
else:
|
530 |
+
aux_loss = None
|
531 |
+
- return topk_idx, topk_weight, aux_loss
|
532 |
+
+ _zeros = torch.zeros_like(logits)
|
533 |
+
+ _scores_filtered = _zeros.scatter(dim=1, index=topk_idx, src=topk_weight)
|
534 |
+
+ load = (_scores_filtered > 0).sum(0)
|
535 |
+
+ return topk_idx, topk_weight, aux_loss, load
|
536 |
+
|
537 |
+
|
538 |
+
class AddAuxiliaryLoss(torch.autograd.Function):
|
539 |
+
@@ -450,10 +459,19 @@ class DeepseekMoE(nn.Module):
|
540 |
+
config=config, intermediate_size=intermediate_size
|
541 |
+
)
|
542 |
+
|
543 |
+
- def forward(self, hidden_states):
|
544 |
+
+ def forward(self, hidden_states, attention_mask=None):
|
545 |
+
+ bsz, seq_len, hsz = hidden_states.shape
|
546 |
+
+ hidden_states = hidden_states.reshape(-1, hsz)
|
547 |
+
+ flattened_mask = None
|
548 |
+
+ flattened_shape = None
|
549 |
+
+ if attention_mask is not None and len(attention_mask.shape) == 2:
|
550 |
+
+ flattened_mask = attention_mask.flatten()
|
551 |
+
+ flattened_shape = flattened_mask.shape
|
552 |
+
+ hidden_states = hidden_states[flattened_mask.bool()]
|
553 |
+
+
|
554 |
+
identity = hidden_states
|
555 |
+
orig_shape = hidden_states.shape
|
556 |
+
- topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
|
557 |
+
+ topk_idx, topk_weight, aux_loss, load = self.gate(hidden_states)
|
558 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
559 |
+
flat_topk_idx = topk_idx.view(-1)
|
560 |
+
if self.training:
|
561 |
+
@@ -472,7 +490,15 @@ class DeepseekMoE(nn.Module):
|
562 |
+
).view(*orig_shape)
|
563 |
+
if self.config.n_shared_experts is not None:
|
564 |
+
y = y + self.shared_experts(identity)
|
565 |
+
- return y
|
566 |
+
+
|
567 |
+
+ if flattened_mask is not None:
|
568 |
+
+ _y = torch.zeros(flattened_shape + (hsz,), dtype=y.dtype, device=y.device)
|
569 |
+
+ _y[flattened_mask.bool()] = y
|
570 |
+
+ y = _y
|
571 |
+
+
|
572 |
+
+ y = y.reshape(bsz, seq_len, hsz)
|
573 |
+
+
|
574 |
+
+ return y, load
|
575 |
+
|
576 |
+
@torch.no_grad()
|
577 |
+
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
|
578 |
+
@@ -1163,7 +1189,7 @@ class DeepseekDecoderLayer(nn.Module):
|
579 |
+
# Fully Connected
|
580 |
+
residual = hidden_states
|
581 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
582 |
+
- hidden_states = self.mlp(hidden_states)
|
583 |
+
+ hidden_states, load = self.mlp(hidden_states, attention_mask=attention_mask)
|
584 |
+
hidden_states = residual + hidden_states
|
585 |
+
|
586 |
+
outputs = (hidden_states,)
|
587 |
+
@@ -1174,6 +1200,8 @@ class DeepseekDecoderLayer(nn.Module):
|
588 |
+
if use_cache:
|
589 |
+
outputs += (present_key_value,)
|
590 |
+
|
591 |
+
+ outputs += (load,)
|
592 |
+
+
|
593 |
+
return outputs
|
594 |
+
|
595 |
+
|
596 |
+
@@ -1220,6 +1248,11 @@ class DeepseekPreTrainedModel(PreTrainedModel):
|
597 |
+
module.weight.data[module.padding_idx].zero_()
|
598 |
+
|
599 |
+
|
600 |
+
+@dataclass
|
601 |
+
+class BaseMoEModelOutputWithPast(BaseModelOutputWithPast):
|
602 |
+
+ gate_load: Optional[torch.Tensor] = None
|
603 |
+
+
|
604 |
+
+
|
605 |
+
Deepseek_INPUTS_DOCSTRING = r"""
|
606 |
+
Args:
|
607 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
608 |
+
@@ -1429,6 +1462,7 @@ class DeepseekModel(DeepseekPreTrainedModel):
|
609 |
+
# decoder layers
|
610 |
+
all_hidden_states = () if output_hidden_states else None
|
611 |
+
all_self_attns = () if output_attentions else None
|
612 |
+
+ gate_load = ()
|
613 |
+
next_decoder_cache = None
|
614 |
+
|
615 |
+
for decoder_layer in self.layers:
|
616 |
+
@@ -1463,6 +1497,8 @@ class DeepseekModel(DeepseekPreTrainedModel):
|
617 |
+
if output_attentions:
|
618 |
+
all_self_attns += (layer_outputs[1],)
|
619 |
+
|
620 |
+
+ gate_load += (layer_outputs[-1],)
|
621 |
+
+
|
622 |
+
hidden_states = self.norm(hidden_states)
|
623 |
+
|
624 |
+
# add hidden states from the last decoder layer
|
625 |
+
@@ -1482,14 +1518,20 @@ class DeepseekModel(DeepseekPreTrainedModel):
|
626 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
627 |
+
if v is not None
|
628 |
+
)
|
629 |
+
- return BaseModelOutputWithPast(
|
630 |
+
+ return BaseMoEModelOutputWithPast(
|
631 |
+
last_hidden_state=hidden_states,
|
632 |
+
past_key_values=next_cache,
|
633 |
+
hidden_states=all_hidden_states,
|
634 |
+
attentions=all_self_attns,
|
635 |
+
+ gate_load=gate_load,
|
636 |
+
)
|
637 |
+
|
638 |
+
|
639 |
+
+@dataclass
|
640 |
+
+class MoECausalLMOutputWithPast(CausalLMOutputWithPast):
|
641 |
+
+ gate_load: Optional[torch.Tensor] = None
|
642 |
+
+
|
643 |
+
+
|
644 |
+
class DeepseekForCausalLM(DeepseekPreTrainedModel):
|
645 |
+
_tied_weights_keys = ["lm_head.weight"]
|
646 |
+
|
647 |
+
@@ -1620,12 +1662,13 @@ class DeepseekForCausalLM(DeepseekPreTrainedModel):
|
648 |
+
output = (logits,) + outputs[1:]
|
649 |
+
return (loss,) + output if loss is not None else output
|
650 |
+
|
651 |
+
- return CausalLMOutputWithPast(
|
652 |
+
+ return MoECausalLMOutputWithPast(
|
653 |
+
loss=loss,
|
654 |
+
logits=logits,
|
655 |
+
past_key_values=outputs.past_key_values,
|
656 |
+
hidden_states=outputs.hidden_states,
|
657 |
+
attentions=outputs.attentions,
|
658 |
+
+ gate_load=outputs.gate_load,
|
659 |
+
)
|
660 |
+
|
661 |
+
def prepare_inputs_for_generation(
|
662 |
+
diff --git a/src/utils/config.py b/src/utils/config.py
|
663 |
+
index 3ea5283..d4060d9 100644
|
664 |
+
--- a/src/utils/config.py
|
665 |
+
+++ b/src/utils/config.py
|
666 |
+
@@ -6,6 +6,7 @@ import torch
|
667 |
+
import transformers
|
668 |
+
|
669 |
+
from src.utils.io import load_json
|
670 |
+
+from src.data import get_uniform_sampling_ratio
|
671 |
+
|
672 |
+
|
673 |
+
@dataclass
|
674 |
+
@@ -33,7 +34,9 @@ class ModelArguments:
|
675 |
+
)
|
676 |
+
attn_impl: str = field(
|
677 |
+
default="flash_attention_2",
|
678 |
+
- metadata={"help": "attention implementation, choice from [eager, flash_attention_2, sdpa] (default: `flash_attention_2`)"}
|
679 |
+
+ metadata={
|
680 |
+
+ "help": "attention implementation, choice from [eager, flash_attention_2, sdpa] (default: `flash_attention_2`)"
|
681 |
+
+ },
|
682 |
+
)
|
683 |
+
|
684 |
+
def __post_init__(self):
|
685 |
+
@@ -56,6 +59,18 @@ class DataArguments:
|
686 |
+
default="data/merged",
|
687 |
+
metadata={"help": "Path to dataset directory or a single jsonl file"},
|
688 |
+
)
|
689 |
+
+ prob_map: str = field(
|
690 |
+
+ default=None,
|
691 |
+
+ metadata={"help": "Path to the probability map file"},
|
692 |
+
+ )
|
693 |
+
+
|
694 |
+
+ def __post_init__(self):
|
695 |
+
+ if self.prob_map is not None:
|
696 |
+
+ if not pathlib.Path(self.prob_map).exists():
|
697 |
+
+ raise ValueError(f"Probability map file {self.prob_map} not found")
|
698 |
+
+ self.prob_map = load_json(self.prob_map)
|
699 |
+
+ else:
|
700 |
+
+ self.prob_map = get_uniform_sampling_ratio(self.dataset_dir_or_path)
|
701 |
+
|
702 |
+
|
703 |
+
@dataclass
|
704 |
+
@@ -70,9 +85,7 @@ class TrainingArguments(transformers.TrainingArguments):
|
705 |
+
)
|
706 |
+
max_eval_steps_per_type: int = field(
|
707 |
+
default=10,
|
708 |
+
- metadata={
|
709 |
+
- "help": "Maximum number of steps to perform during evaluation."
|
710 |
+
- },
|
711 |
+
+ metadata={"help": "Maximum number of steps to perform during evaluation."},
|
712 |
+
)
|
713 |
+
dynamic_sampling_sim_type: Literal["cos", "l2"] = field(
|
714 |
+
default="l2",
|
715 |
+
@@ -88,7 +101,5 @@ class TrainingArguments(transformers.TrainingArguments):
|
716 |
+
)
|
717 |
+
freeze_gate: bool = field(
|
718 |
+
default=False,
|
719 |
+
- metadata={
|
720 |
+
- "help": "Whether to freeze the gate during training."
|
721 |
+
- },
|
722 |
+
+ metadata={"help": "Whether to freeze the gate during training."},
|
723 |
+
)
|
724 |
+
diff --git a/src/utils/visualization.py b/src/utils/visualization.py
|
725 |
+
index 794f6c8..02bd236 100644
|
726 |
+
--- a/src/utils/visualization.py
|
727 |
+
+++ b/src/utils/visualization.py
|
728 |
+
@@ -180,6 +180,86 @@ def gate_load_stats(model_dir, data_dir, result_dir, update_strategy: str = "cos
|
729 |
+
)
|
730 |
+
|
731 |
+
|
732 |
+
+def sampling_info_stats(filepath: str, data_type: str, output_dir: str):
|
733 |
+
+ from pathlib import Path
|
734 |
+
+ import numpy as np
|
735 |
+
+ from src.utils.io import load_jsonlines
|
736 |
+
+
|
737 |
+
+ Path(output_dir).mkdir(exist_ok=True, parents=True)
|
738 |
+
+
|
739 |
+
+ data = load_jsonlines(filepath)
|
740 |
+
+ step2data = {ins["step"]: ins for ins in data}
|
741 |
+
+
|
742 |
+
+ data_types = sorted(data[0]["old_prob_map"].keys())
|
743 |
+
+ data_type_idx = data_types.index(data_type)
|
744 |
+
+
|
745 |
+
+ probs = []
|
746 |
+
+ loads = []
|
747 |
+
+ sims = []
|
748 |
+
+ steps = sorted(step2data.keys())
|
749 |
+
+ for step in steps:
|
750 |
+
+ ins = step2data[step]
|
751 |
+
+ probs.append(ins["old_prob_map"][data_type])
|
752 |
+
+ loads.append(ins["name2load"][data_type])
|
753 |
+
+ sims.append(ins["sim"][data_type_idx])
|
754 |
+
+
|
755 |
+
+ # probs
|
756 |
+
+ fig = plt.figure()
|
757 |
+
+ ax = fig.add_subplot(111)
|
758 |
+
+ ax.plot(steps, probs)
|
759 |
+
+ ax.set_title(f"Sampling Probability of {data_type}")
|
760 |
+
+ ax.set_xlabel("step")
|
761 |
+
+ fig.savefig(f"{output_dir}/prob-{data_type}.png")
|
762 |
+
+
|
763 |
+
+ # loads
|
764 |
+
+ def cv_square(data):
|
765 |
+
+ return np.var(data, axis=1) / (np.mean(data, axis=1)**2 + 1e-10)
|
766 |
+
+
|
767 |
+
+ fig = plt.figure()
|
768 |
+
+ ax = fig.add_subplot(111)
|
769 |
+
+ ax.plot(steps, cv_square(loads))
|
770 |
+
+ ax.set_title(f"cv(load)^2 of {data_type}")
|
771 |
+
+ ax.set_xlabel("step")
|
772 |
+
+ fig.savefig(f"{output_dir}/load_cv-{data_type}.png")
|
773 |
+
+
|
774 |
+
+ # sims
|
775 |
+
+ fig = plt.figure()
|
776 |
+
+ ax = fig.add_subplot(111)
|
777 |
+
+ ax.plot(steps, np.mean(sims, axis=1))
|
778 |
+
+ ax.set_title(f"Mean Similarities with {data_type}")
|
779 |
+
+ ax.set_xlabel("step")
|
780 |
+
+ fig.savefig(f"{output_dir}/sim-{data_type}.png")
|
781 |
+
+
|
782 |
+
+
|
783 |
+
+def test_sampling_convergence():
|
784 |
+
+ from collections import defaultdict
|
785 |
+
+ from src.callbacks import AdaptiveSamplingCallback
|
786 |
+
+
|
787 |
+
+ # freeze gate
|
788 |
+
+ name2load = {"code": [0.1359794776119403, 0.1333115671641791, 0.12858208955223882, 0.10330223880597016, 0.12544776119402984, 0.12625932835820897, 0.12761194029850748, 0.11950559701492537], "orca": [0.1509941502743006, 0.11721425756978752, 0.1232988815809414, 0.12714439426545024, 0.11256554420634679, 0.14008274482465977, 0.11819552632376563, 0.11050450095474797], "math": [0.15956486572028086, 0.10727138452881943, 0.11506675888262392, 0.10958069091633744, 0.11805010139847842, 0.11915200393871546, 0.13648938539627462, 0.13482480921846976], "sharegpt": [0.15337086599959998, 0.11428233411553493, 0.12873151621889287, 0.1177436980734424, 0.11538123789498336, 0.13793986642403783, 0.12419686111124664, 0.10835362016226212]} # fmt: skip
|
789 |
+
+ # # dynamic
|
790 |
+
+ # name2load = {"code": [0.14031716417910448, 0.1310634328358209, 0.12651119402985075, 0.10993470149253731, 0.12196828358208955, 0.12552238805970148, 0.12791977611940297, 0.11676305970149255], "orca": [0.15106234655836084, 0.11803640166095838, 0.12349968175067437, 0.12884551268450883, 0.11344072985178673, 0.1383778377231534, 0.11733170672566907, 0.1094057830448883], "math": [0.16001617686708006, 0.10756444371505268, 0.11391210568886491, 0.114803005615014, 0.11676650216277679, 0.1177863481308685, 0.13630182751708533, 0.13284959030325763], "sharegpt": [0.15440024978412215, 0.113654214863131, 0.12914741653941664, 0.12104040941178769, 0.11470799162832905, 0.13593110446537907, 0.12316259873058931, 0.10795601457724527]} # fmt: skip
|
791 |
+
+ names = sorted(name2load.keys())
|
792 |
+
+ callback = AdaptiveSamplingCallback()
|
793 |
+
+ callback.prob_map = {"code": 0.25, "math": 0.25, "orca": 0.25, "sharegpt": 0.25}
|
794 |
+
+ name2probs = defaultdict(list)
|
795 |
+
+ for _ in range(100):
|
796 |
+
+ for name in names:
|
797 |
+
+ name2probs[name].append(callback.prob_map[name])
|
798 |
+
+ new_name2prob, _ = callback._update_prob_map(name2load)
|
799 |
+
+ callback.prob_map = new_name2prob
|
800 |
+
+ print(f"final prob_map: {callback.prob_map}")
|
801 |
+
+
|
802 |
+
+ fig = plt.figure()
|
803 |
+
+ ax = fig.add_subplot(111)
|
804 |
+
+ for name in names:
|
805 |
+
+ ax.plot(name2probs[name], label=name)
|
806 |
+
+ ax.legend()
|
807 |
+
+ ax.set_title("Sampling Probability")
|
808 |
+
+ ax.set_xlabel("step")
|
809 |
+
+ fig.savefig("results/sampling_convergence.png")
|
810 |
+
+
|
811 |
+
+
|
812 |
+
if __name__ == "__main__":
|
813 |
+
# gate_load_stats(
|
814 |
+
# "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-2_8-new",
|
815 |
+
@@ -195,12 +275,12 @@ if __name__ == "__main__":
|
816 |
+
# "results/gate_load_vis_llama_moe_2_8_orca_4clusters",
|
817 |
+
# )
|
818 |
+
|
819 |
+
- gate_load_stats(
|
820 |
+
- "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-2_8-new",
|
821 |
+
- "data/four_types_mix/dev",
|
822 |
+
- "results/debug",
|
823 |
+
- update_strategy="l2",
|
824 |
+
- )
|
825 |
+
+ # gate_load_stats(
|
826 |
+
+ # "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-2_8-new",
|
827 |
+
+ # "data/four_types_mix/dev",
|
828 |
+
+ # "results/debug",
|
829 |
+
+ # update_strategy="l2",
|
830 |
+
+ # )
|
831 |
+
|
832 |
+
# gate_load_stats(
|
833 |
+
# "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-2_8-new",
|
834 |
+
@@ -227,3 +307,29 @@ if __name__ == "__main__":
|
835 |
+
# "results/gate_load_vis_llama_moe_2_8_four_types_mix_l2",
|
836 |
+
# update_strategy="l2"
|
837 |
+
# )
|
838 |
+
+
|
839 |
+
+ # sampling_info_stats(
|
840 |
+
+ # "/mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad_freeze_gate/moe_sft-2491632/sampling_info/data.jsonl",
|
841 |
+
+ # "code",
|
842 |
+
+ # "results/sampling_info/llama_moe_four_mix_wo_pad_freeze_gate/code",
|
843 |
+
+ # )
|
844 |
+
+
|
845 |
+
+ # sampling_info_stats(
|
846 |
+
+ # "/mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad/moe_sft-2491633/sampling_info/data.jsonl",
|
847 |
+
+ # "code",
|
848 |
+
+ # "results/sampling_info/llama_moe_four_mix_wo_pad/code",
|
849 |
+
+ # )
|
850 |
+
+
|
851 |
+
+ # sampling_info_stats(
|
852 |
+
+ # "/mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad_freeze_gate_wo_gate_noise/moe_sft-2493315/sampling_info/data.jsonl",
|
853 |
+
+ # "code",
|
854 |
+
+ # "results/sampling_info/llama_moe_four_mix_wo_pad_freeze_gate_wo_gate_noise/code",
|
855 |
+
+ # )
|
856 |
+
+
|
857 |
+
+ # sampling_info_stats(
|
858 |
+
+ # "outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad_wo_gate_noise/moe_sft-2492650/sampling_info/data.jsonl",
|
859 |
+
+ # "code",
|
860 |
+
+ # "results/sampling_info/llama_moe_four_mix_wo_pad_wo_gate_noise/code",
|
861 |
+
+ # )
|
862 |
+
+
|
863 |
+
+ test_sampling_convergence()
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.36.2"
|
7 |
+
}
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8919f505f53749e1c46511cd975e9da2c91fbcd8105ad30bc26ea2bb5fec3f38
|
3 |
+
size 4996976432
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61cb496bd075daa995cf0341587193b2e7a4d5805b4aa561bff4013b1861afff
|
3 |
+
size 4982823704
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21fffb1ada83903f9906325e0244222f88a5a97fdc3ab778e424f940e2d07974
|
3 |
+
size 3501371152
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_llama_moe_hf.py
ADDED
@@ -0,0 +1,1690 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import warnings
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.utils.checkpoint
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torch.distributions.normal import Normal
|
11 |
+
from transformers.modeling_outputs import (
|
12 |
+
CausalLMOutputWithPast,
|
13 |
+
)
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
from transformers.activations import ACT2FN
|
16 |
+
from transformers.utils import ModelOutput, logging
|
17 |
+
from transformers.cache_utils import Cache, DynamicCache
|
18 |
+
from transformers.modeling_attn_mask_utils import (
|
19 |
+
AttentionMaskConverter,
|
20 |
+
_prepare_4d_attention_mask,
|
21 |
+
_prepare_4d_causal_attention_mask,
|
22 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
23 |
+
)
|
24 |
+
from transformers.utils import is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10
|
25 |
+
|
26 |
+
from .configuration_llama_moe import LlamaMoEConfig
|
27 |
+
|
28 |
+
|
29 |
+
if is_flash_attn_2_available():
|
30 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
31 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
32 |
+
|
33 |
+
|
34 |
+
def _get_unpad_data(attention_mask):
|
35 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
36 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
37 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
38 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
39 |
+
return (
|
40 |
+
indices,
|
41 |
+
cu_seqlens,
|
42 |
+
max_seqlen_in_batch,
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__)
|
47 |
+
|
48 |
+
_CONFIG_FOR_DOC = "LlamaMoEConfig"
|
49 |
+
|
50 |
+
|
51 |
+
@dataclass
|
52 |
+
class CalculatorOutput(ModelOutput):
|
53 |
+
hidden_states: Optional[torch.FloatTensor] = None
|
54 |
+
num_dropped_tokens: Optional[int] = None
|
55 |
+
|
56 |
+
|
57 |
+
@dataclass
|
58 |
+
class BaseMoEModelOutputWithPast(ModelOutput):
|
59 |
+
"""
|
60 |
+
Args:
|
61 |
+
num_dropped_tokens: layer idx to the number of dropped tokens
|
62 |
+
"""
|
63 |
+
|
64 |
+
last_hidden_state: torch.FloatTensor = None
|
65 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
66 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
67 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
68 |
+
balance_loss: Optional[float] = None
|
69 |
+
num_dropped_tokens: Optional[Tuple[torch.Tensor]] = None
|
70 |
+
gate_load: Optional[Tuple[list]] = None
|
71 |
+
gate_importance: Optional[Tuple[list]] = None
|
72 |
+
|
73 |
+
|
74 |
+
@dataclass
|
75 |
+
class MoECausalLMOutputWithPast(CausalLMOutputWithPast):
|
76 |
+
balance_loss: Optional[float] = None
|
77 |
+
num_dropped_tokens: Optional[Tuple[int]] = None
|
78 |
+
gate_load: Optional[Tuple[list[torch.Tensor]]] = None
|
79 |
+
gate_importance: Optional[Tuple[list[torch.Tensor]]] = None
|
80 |
+
|
81 |
+
|
82 |
+
@dataclass
|
83 |
+
class MoEMlpOutput(ModelOutput):
|
84 |
+
hidden_states: Optional[torch.FloatTensor] = None
|
85 |
+
balance_loss: Optional[torch.FloatTensor] = None
|
86 |
+
num_dropped_tokens: Optional[int] = None
|
87 |
+
gate_load: Optional[list] = None
|
88 |
+
gate_importance: Optional[list] = None
|
89 |
+
|
90 |
+
|
91 |
+
def _make_causal_mask(
|
92 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
93 |
+
):
|
94 |
+
"""
|
95 |
+
Make causal mask used for bi-directional self-attention.
|
96 |
+
"""
|
97 |
+
bsz, tgt_len = input_ids_shape
|
98 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
99 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
100 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
101 |
+
mask = mask.to(dtype)
|
102 |
+
|
103 |
+
if past_key_values_length > 0:
|
104 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
105 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
106 |
+
|
107 |
+
|
108 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
109 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
110 |
+
"""
|
111 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
112 |
+
"""
|
113 |
+
bsz, src_len = mask.size()
|
114 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
115 |
+
|
116 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
117 |
+
|
118 |
+
inverted_mask = 1.0 - expanded_mask
|
119 |
+
|
120 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
121 |
+
|
122 |
+
|
123 |
+
class LlamaRMSNorm(nn.Module):
|
124 |
+
def __init__(self, hidden_size, eps=1e-6):
|
125 |
+
"""
|
126 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
127 |
+
"""
|
128 |
+
super().__init__()
|
129 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
130 |
+
self.variance_epsilon = eps
|
131 |
+
|
132 |
+
def forward(self, hidden_states):
|
133 |
+
input_dtype = hidden_states.dtype
|
134 |
+
hidden_states = hidden_states.to(torch.float32)
|
135 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
136 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
137 |
+
return self.weight * hidden_states.to(input_dtype)
|
138 |
+
|
139 |
+
|
140 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
141 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
142 |
+
super().__init__()
|
143 |
+
|
144 |
+
self.dim = dim
|
145 |
+
self.max_position_embeddings = max_position_embeddings
|
146 |
+
self.base = base
|
147 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
148 |
+
self.register_buffer("inv_freq", inv_freq)
|
149 |
+
|
150 |
+
# Build here to make `torch.jit.trace` work.
|
151 |
+
self._set_cos_sin_cache(
|
152 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
153 |
+
)
|
154 |
+
|
155 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
156 |
+
self.max_seq_len_cached = seq_len
|
157 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
158 |
+
|
159 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
160 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
161 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
162 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
163 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
164 |
+
|
165 |
+
def forward(self, x, seq_len=None):
|
166 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
167 |
+
if seq_len > self.max_seq_len_cached:
|
168 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
169 |
+
|
170 |
+
return (
|
171 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
172 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
173 |
+
)
|
174 |
+
|
175 |
+
|
176 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
177 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
178 |
+
|
179 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
180 |
+
self.scaling_factor = scaling_factor
|
181 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
182 |
+
|
183 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
184 |
+
self.max_seq_len_cached = seq_len
|
185 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
186 |
+
t = t / self.scaling_factor
|
187 |
+
|
188 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
189 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
190 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
191 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
192 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
193 |
+
|
194 |
+
|
195 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
196 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
197 |
+
|
198 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
199 |
+
self.scaling_factor = scaling_factor
|
200 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
201 |
+
|
202 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
203 |
+
self.max_seq_len_cached = seq_len
|
204 |
+
|
205 |
+
if seq_len > self.max_position_embeddings:
|
206 |
+
base = self.base * (
|
207 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
208 |
+
) ** (self.dim / (self.dim - 2))
|
209 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
210 |
+
self.register_buffer("inv_freq", inv_freq)
|
211 |
+
|
212 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
213 |
+
|
214 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
215 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
216 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
217 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
218 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
219 |
+
|
220 |
+
|
221 |
+
def rotate_half(x):
|
222 |
+
"""Rotates half the hidden dims of the input."""
|
223 |
+
x1 = x[..., : x.shape[-1] // 2]
|
224 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
225 |
+
return torch.cat((-x2, x1), dim=-1)
|
226 |
+
|
227 |
+
|
228 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
229 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
230 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
231 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
232 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
233 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
234 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
235 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
236 |
+
return q_embed, k_embed
|
237 |
+
|
238 |
+
|
239 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
240 |
+
"""
|
241 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
242 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
243 |
+
"""
|
244 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
245 |
+
if n_rep == 1:
|
246 |
+
return hidden_states
|
247 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
248 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
249 |
+
|
250 |
+
|
251 |
+
class LlamaAttention(nn.Module):
|
252 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
253 |
+
|
254 |
+
def __init__(self, config: LlamaMoEConfig, layer_idx: Optional[int] = None):
|
255 |
+
super().__init__()
|
256 |
+
self.config = config
|
257 |
+
self.layer_idx = layer_idx
|
258 |
+
if layer_idx is None:
|
259 |
+
logger.warning_once(
|
260 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
261 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
262 |
+
"when creating this class."
|
263 |
+
)
|
264 |
+
|
265 |
+
self.attention_dropout = config.attention_dropout
|
266 |
+
self.hidden_size = config.hidden_size
|
267 |
+
self.num_heads = config.num_attention_heads
|
268 |
+
self.head_dim = self.hidden_size // self.num_heads
|
269 |
+
self.num_key_value_heads = config.num_key_value_heads
|
270 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
271 |
+
self.max_position_embeddings = config.max_position_embeddings
|
272 |
+
self.rope_theta = config.rope_theta
|
273 |
+
self.is_causal = True
|
274 |
+
|
275 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
276 |
+
raise ValueError(
|
277 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
278 |
+
f" and `num_heads`: {self.num_heads})."
|
279 |
+
)
|
280 |
+
|
281 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
282 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
283 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
284 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
285 |
+
self._init_rope()
|
286 |
+
|
287 |
+
def _init_rope(self):
|
288 |
+
if self.config.rope_scaling is None:
|
289 |
+
self.rotary_emb = LlamaRotaryEmbedding(
|
290 |
+
self.head_dim,
|
291 |
+
max_position_embeddings=self.max_position_embeddings,
|
292 |
+
base=self.rope_theta,
|
293 |
+
)
|
294 |
+
else:
|
295 |
+
scaling_type = self.config.rope_scaling["type"]
|
296 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
297 |
+
if scaling_type == "linear":
|
298 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
299 |
+
self.head_dim,
|
300 |
+
max_position_embeddings=self.max_position_embeddings,
|
301 |
+
scaling_factor=scaling_factor,
|
302 |
+
base=self.rope_theta,
|
303 |
+
)
|
304 |
+
elif scaling_type == "dynamic":
|
305 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
306 |
+
self.head_dim,
|
307 |
+
max_position_embeddings=self.max_position_embeddings,
|
308 |
+
scaling_factor=scaling_factor,
|
309 |
+
base=self.rope_theta,
|
310 |
+
)
|
311 |
+
else:
|
312 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
313 |
+
|
314 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
315 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
316 |
+
|
317 |
+
def forward(
|
318 |
+
self,
|
319 |
+
hidden_states: torch.Tensor,
|
320 |
+
attention_mask: Optional[torch.Tensor] = None,
|
321 |
+
position_ids: Optional[torch.LongTensor] = None,
|
322 |
+
past_key_value: Optional[Cache] = None,
|
323 |
+
output_attentions: bool = False,
|
324 |
+
use_cache: bool = False,
|
325 |
+
**kwargs,
|
326 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
327 |
+
if "padding_mask" in kwargs:
|
328 |
+
warnings.warn(
|
329 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
330 |
+
)
|
331 |
+
|
332 |
+
bsz, q_len, _ = hidden_states.size()
|
333 |
+
|
334 |
+
if self.config.pretraining_tp > 1:
|
335 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
336 |
+
query_slices = self.q_proj.weight.split(
|
337 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
338 |
+
)
|
339 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
340 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
341 |
+
|
342 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
343 |
+
query_states = torch.cat(query_states, dim=-1)
|
344 |
+
|
345 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
346 |
+
key_states = torch.cat(key_states, dim=-1)
|
347 |
+
|
348 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
349 |
+
value_states = torch.cat(value_states, dim=-1)
|
350 |
+
|
351 |
+
else:
|
352 |
+
query_states = self.q_proj(hidden_states)
|
353 |
+
key_states = self.k_proj(hidden_states)
|
354 |
+
value_states = self.v_proj(hidden_states)
|
355 |
+
|
356 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
357 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
358 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
359 |
+
|
360 |
+
kv_seq_len = key_states.shape[-2]
|
361 |
+
if past_key_value is not None:
|
362 |
+
if self.layer_idx is None:
|
363 |
+
raise ValueError(
|
364 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
365 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
366 |
+
"with a layer index."
|
367 |
+
)
|
368 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
369 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
370 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
371 |
+
|
372 |
+
if past_key_value is not None:
|
373 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
374 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
375 |
+
|
376 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
377 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
378 |
+
|
379 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
380 |
+
|
381 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
382 |
+
raise ValueError(
|
383 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
384 |
+
f" {attn_weights.size()}"
|
385 |
+
)
|
386 |
+
|
387 |
+
if attention_mask is not None:
|
388 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
389 |
+
raise ValueError(
|
390 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
391 |
+
)
|
392 |
+
attn_weights = attn_weights + attention_mask
|
393 |
+
|
394 |
+
# upcast attention to fp32
|
395 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
396 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
397 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
398 |
+
|
399 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
400 |
+
raise ValueError(
|
401 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
402 |
+
f" {attn_output.size()}"
|
403 |
+
)
|
404 |
+
|
405 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
406 |
+
|
407 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
408 |
+
|
409 |
+
if self.config.pretraining_tp > 1:
|
410 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
411 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
412 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
413 |
+
else:
|
414 |
+
attn_output = self.o_proj(attn_output)
|
415 |
+
|
416 |
+
if not output_attentions:
|
417 |
+
attn_weights = None
|
418 |
+
|
419 |
+
return attn_output, attn_weights, past_key_value
|
420 |
+
|
421 |
+
|
422 |
+
class LlamaFlashAttention2(LlamaAttention):
|
423 |
+
"""
|
424 |
+
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
425 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
426 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
427 |
+
"""
|
428 |
+
|
429 |
+
def __init__(self, *args, **kwargs):
|
430 |
+
super().__init__(*args, **kwargs)
|
431 |
+
|
432 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
433 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
434 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
435 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
436 |
+
|
437 |
+
def forward(
|
438 |
+
self,
|
439 |
+
hidden_states: torch.Tensor,
|
440 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
441 |
+
position_ids: Optional[torch.LongTensor] = None,
|
442 |
+
past_key_value: Optional[Cache] = None,
|
443 |
+
output_attentions: bool = False,
|
444 |
+
use_cache: bool = False,
|
445 |
+
**kwargs,
|
446 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
447 |
+
# LlamaFlashAttention2 attention does not support output_attentions
|
448 |
+
if "padding_mask" in kwargs:
|
449 |
+
warnings.warn(
|
450 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
451 |
+
)
|
452 |
+
|
453 |
+
# overwrite attention_mask with padding_mask
|
454 |
+
attention_mask = kwargs.pop("padding_mask")
|
455 |
+
|
456 |
+
output_attentions = False
|
457 |
+
|
458 |
+
bsz, q_len, _ = hidden_states.size()
|
459 |
+
|
460 |
+
query_states = self.q_proj(hidden_states)
|
461 |
+
key_states = self.k_proj(hidden_states)
|
462 |
+
value_states = self.v_proj(hidden_states)
|
463 |
+
|
464 |
+
# Flash attention requires the input to have the shape
|
465 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
466 |
+
# therefore we just need to keep the original shape
|
467 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
468 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
469 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
470 |
+
|
471 |
+
kv_seq_len = key_states.shape[-2]
|
472 |
+
if past_key_value is not None:
|
473 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
474 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
475 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
476 |
+
|
477 |
+
if past_key_value is not None:
|
478 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
479 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
480 |
+
|
481 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
482 |
+
# to be able to avoid many of these transpose/reshape/view.
|
483 |
+
query_states = query_states.transpose(1, 2)
|
484 |
+
key_states = key_states.transpose(1, 2)
|
485 |
+
value_states = value_states.transpose(1, 2)
|
486 |
+
|
487 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
488 |
+
|
489 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
490 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
491 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
492 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
493 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
494 |
+
|
495 |
+
input_dtype = query_states.dtype
|
496 |
+
if input_dtype == torch.float32:
|
497 |
+
if torch.is_autocast_enabled():
|
498 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
499 |
+
# Handle the case where the model is quantized
|
500 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
501 |
+
target_dtype = self.config._pre_quantization_dtype
|
502 |
+
else:
|
503 |
+
target_dtype = self.q_proj.weight.dtype
|
504 |
+
|
505 |
+
logger.warning_once(
|
506 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
507 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
508 |
+
f" {target_dtype}."
|
509 |
+
)
|
510 |
+
|
511 |
+
query_states = query_states.to(target_dtype)
|
512 |
+
key_states = key_states.to(target_dtype)
|
513 |
+
value_states = value_states.to(target_dtype)
|
514 |
+
|
515 |
+
attn_output = self._flash_attention_forward(
|
516 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
517 |
+
)
|
518 |
+
|
519 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
520 |
+
attn_output = self.o_proj(attn_output)
|
521 |
+
|
522 |
+
if not output_attentions:
|
523 |
+
attn_weights = None
|
524 |
+
|
525 |
+
return attn_output, attn_weights, past_key_value
|
526 |
+
|
527 |
+
def _flash_attention_forward(
|
528 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
529 |
+
):
|
530 |
+
"""
|
531 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
532 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
533 |
+
|
534 |
+
Args:
|
535 |
+
query_states (`torch.Tensor`):
|
536 |
+
Input query states to be passed to Flash Attention API
|
537 |
+
key_states (`torch.Tensor`):
|
538 |
+
Input key states to be passed to Flash Attention API
|
539 |
+
value_states (`torch.Tensor`):
|
540 |
+
Input value states to be passed to Flash Attention API
|
541 |
+
attention_mask (`torch.Tensor`):
|
542 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
543 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
544 |
+
dropout (`int`, *optional*):
|
545 |
+
Attention dropout
|
546 |
+
softmax_scale (`float`, *optional*):
|
547 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
548 |
+
"""
|
549 |
+
if not self._flash_attn_uses_top_left_mask:
|
550 |
+
causal = self.is_causal
|
551 |
+
else:
|
552 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
553 |
+
causal = self.is_causal and query_length != 1
|
554 |
+
|
555 |
+
# Contains at least one padding token in the sequence
|
556 |
+
if attention_mask is not None:
|
557 |
+
batch_size = query_states.shape[0]
|
558 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
559 |
+
query_states, key_states, value_states, attention_mask, query_length
|
560 |
+
)
|
561 |
+
|
562 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
563 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
564 |
+
|
565 |
+
attn_output_unpad = flash_attn_varlen_func(
|
566 |
+
query_states,
|
567 |
+
key_states,
|
568 |
+
value_states,
|
569 |
+
cu_seqlens_q=cu_seqlens_q,
|
570 |
+
cu_seqlens_k=cu_seqlens_k,
|
571 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
572 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
573 |
+
dropout_p=dropout,
|
574 |
+
softmax_scale=softmax_scale,
|
575 |
+
causal=causal,
|
576 |
+
)
|
577 |
+
|
578 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
579 |
+
else:
|
580 |
+
attn_output = flash_attn_func(
|
581 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
582 |
+
)
|
583 |
+
|
584 |
+
return attn_output
|
585 |
+
|
586 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
587 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
588 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
589 |
+
|
590 |
+
key_layer = index_first_axis(
|
591 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
592 |
+
)
|
593 |
+
value_layer = index_first_axis(
|
594 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
595 |
+
)
|
596 |
+
if query_length == kv_seq_len:
|
597 |
+
query_layer = index_first_axis(
|
598 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
599 |
+
)
|
600 |
+
cu_seqlens_q = cu_seqlens_k
|
601 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
602 |
+
indices_q = indices_k
|
603 |
+
elif query_length == 1:
|
604 |
+
max_seqlen_in_batch_q = 1
|
605 |
+
cu_seqlens_q = torch.arange(
|
606 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
607 |
+
) # There is a memcpy here, that is very bad.
|
608 |
+
indices_q = cu_seqlens_q[:-1]
|
609 |
+
query_layer = query_layer.squeeze(1)
|
610 |
+
else:
|
611 |
+
# The -q_len: slice assumes left padding.
|
612 |
+
attention_mask = attention_mask[:, -query_length:]
|
613 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
614 |
+
|
615 |
+
return (
|
616 |
+
query_layer,
|
617 |
+
key_layer,
|
618 |
+
value_layer,
|
619 |
+
indices_q,
|
620 |
+
(cu_seqlens_q, cu_seqlens_k),
|
621 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
622 |
+
)
|
623 |
+
|
624 |
+
|
625 |
+
class LlamaSdpaAttention(LlamaAttention):
|
626 |
+
"""
|
627 |
+
Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
628 |
+
`LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
629 |
+
SDPA API.
|
630 |
+
"""
|
631 |
+
|
632 |
+
# Adapted from LlamaAttention.forward
|
633 |
+
def forward(
|
634 |
+
self,
|
635 |
+
hidden_states: torch.Tensor,
|
636 |
+
attention_mask: Optional[torch.Tensor] = None,
|
637 |
+
position_ids: Optional[torch.LongTensor] = None,
|
638 |
+
past_key_value: Optional[Cache] = None,
|
639 |
+
output_attentions: bool = False,
|
640 |
+
use_cache: bool = False,
|
641 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
642 |
+
if output_attentions:
|
643 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
644 |
+
logger.warning_once(
|
645 |
+
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
646 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
647 |
+
)
|
648 |
+
return super().forward(
|
649 |
+
hidden_states=hidden_states,
|
650 |
+
attention_mask=attention_mask,
|
651 |
+
position_ids=position_ids,
|
652 |
+
past_key_value=past_key_value,
|
653 |
+
output_attentions=output_attentions,
|
654 |
+
use_cache=use_cache,
|
655 |
+
)
|
656 |
+
|
657 |
+
bsz, q_len, _ = hidden_states.size()
|
658 |
+
|
659 |
+
query_states = self.q_proj(hidden_states)
|
660 |
+
key_states = self.k_proj(hidden_states)
|
661 |
+
value_states = self.v_proj(hidden_states)
|
662 |
+
|
663 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
664 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
665 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
666 |
+
|
667 |
+
kv_seq_len = key_states.shape[-2]
|
668 |
+
if past_key_value is not None:
|
669 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
670 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
671 |
+
|
672 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
673 |
+
|
674 |
+
if past_key_value is not None:
|
675 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
676 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
677 |
+
|
678 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
679 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
680 |
+
|
681 |
+
if attention_mask is not None:
|
682 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
683 |
+
raise ValueError(
|
684 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
685 |
+
)
|
686 |
+
|
687 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
688 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
689 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
690 |
+
query_states = query_states.contiguous()
|
691 |
+
key_states = key_states.contiguous()
|
692 |
+
value_states = value_states.contiguous()
|
693 |
+
|
694 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
695 |
+
query_states,
|
696 |
+
key_states,
|
697 |
+
value_states,
|
698 |
+
attn_mask=attention_mask,
|
699 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
700 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
701 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
702 |
+
)
|
703 |
+
|
704 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
705 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
706 |
+
|
707 |
+
attn_output = self.o_proj(attn_output)
|
708 |
+
|
709 |
+
return attn_output, None, past_key_value
|
710 |
+
|
711 |
+
|
712 |
+
LLAMA_ATTENTION_CLASSES = {
|
713 |
+
"eager": LlamaAttention,
|
714 |
+
"flash_attention_2": LlamaFlashAttention2,
|
715 |
+
"sdpa": LlamaSdpaAttention,
|
716 |
+
}
|
717 |
+
|
718 |
+
|
719 |
+
class TopKBalancedNoisyGate(nn.Module):
|
720 |
+
def __init__(
|
721 |
+
self,
|
722 |
+
input_size,
|
723 |
+
num_experts,
|
724 |
+
num_selects,
|
725 |
+
gate_network="mlp",
|
726 |
+
use_softmax=True,
|
727 |
+
use_balance=True,
|
728 |
+
balance_loss_weight=1e-2,
|
729 |
+
add_noise=True,
|
730 |
+
noise_epsilon=1e-2,
|
731 |
+
):
|
732 |
+
super(TopKBalancedNoisyGate, self).__init__()
|
733 |
+
assert num_selects <= num_experts
|
734 |
+
self.input_size = input_size
|
735 |
+
self.num_experts = num_experts
|
736 |
+
self.num_selects = num_selects
|
737 |
+
|
738 |
+
self.gate_network_type = gate_network
|
739 |
+
self.gate_network = self.get_gate_network(gate_network, input_size, num_experts)
|
740 |
+
|
741 |
+
self.use_softmax = use_softmax
|
742 |
+
self.softmax = nn.Softmax(1)
|
743 |
+
|
744 |
+
self.use_balance = use_balance
|
745 |
+
self.balance_loss_weight = balance_loss_weight
|
746 |
+
|
747 |
+
# add_noise
|
748 |
+
self.add_noise = add_noise
|
749 |
+
self.noise_epsilon = noise_epsilon
|
750 |
+
self.warned = False
|
751 |
+
if self.add_noise:
|
752 |
+
self.weight_noise = nn.Linear(input_size, num_experts, bias=False)
|
753 |
+
self.weight_noise.weight.data = torch.zeros(
|
754 |
+
(num_experts, input_size),
|
755 |
+
requires_grad=True,
|
756 |
+
device=self.weight_noise.weight.data.device,
|
757 |
+
dtype=self.weight_noise.weight.data.dtype,
|
758 |
+
)
|
759 |
+
self.mean = 0.0
|
760 |
+
self.std = 1.0
|
761 |
+
self.normal = Normal(self.mean, self.std)
|
762 |
+
self.softplus = nn.Softplus()
|
763 |
+
|
764 |
+
self.reset_parameters()
|
765 |
+
|
766 |
+
def get_gate_network(self, gate_type, input_size, num_experts):
|
767 |
+
gate_type = gate_type.lower()
|
768 |
+
|
769 |
+
if gate_type == "linear":
|
770 |
+
gate_network = nn.Linear(input_size, num_experts, bias=False)
|
771 |
+
nn.init.zeros_(gate_network.weight)
|
772 |
+
elif gate_type == "mlp":
|
773 |
+
gate_network = torch.nn.Sequential(
|
774 |
+
torch.nn.Linear(input_size, num_experts, bias=False),
|
775 |
+
torch.nn.Tanh(),
|
776 |
+
torch.nn.Linear(num_experts, num_experts, bias=False),
|
777 |
+
)
|
778 |
+
else:
|
779 |
+
raise ValueError(f'Unexpected gate_type: {gate_type}.')
|
780 |
+
|
781 |
+
return gate_network
|
782 |
+
|
783 |
+
def reset_gate_network(self):
|
784 |
+
if "gate_network_type" not in vars(self):
|
785 |
+
raise KeyError(f"{type(self)} does not have a gate network.")
|
786 |
+
else:
|
787 |
+
self.gate_network = self.get_gate_network(
|
788 |
+
self.gate_network_type, self.input_size, self.num_experts
|
789 |
+
)
|
790 |
+
|
791 |
+
def reset_parameters(self):
|
792 |
+
if self.add_noise:
|
793 |
+
nn.init.zeros_(self.weight_noise.weight)
|
794 |
+
# nn.init.zeros_(self.weight_noise)
|
795 |
+
|
796 |
+
def cv_squared(self, x, eps=1e-10):
|
797 |
+
"""The squared coefficient of variation of a sample.
|
798 |
+
Useful as a loss to encourage a positive distribution to be more uniform.
|
799 |
+
Epsilons added for numerical stability.
|
800 |
+
Returns 0 for an empty Tensor.
|
801 |
+
Args:
|
802 |
+
x: a `Tensor`.
|
803 |
+
Returns:
|
804 |
+
a `Scalar`.s
|
805 |
+
"""
|
806 |
+
if x.shape[0] == 1:
|
807 |
+
return torch.tensor(0.0, device=x.device)
|
808 |
+
return x.float().var() / (x.float().mean() ** 2 + eps)
|
809 |
+
|
810 |
+
def forward(self, x):
|
811 |
+
logits_gate = self.gate_network(x)
|
812 |
+
if self.training and self.add_noise:
|
813 |
+
noise_mm = self.weight_noise(x)
|
814 |
+
noise_control = self.softplus(noise_mm) + self.noise_epsilon
|
815 |
+
logits_noise = torch.randn_like(logits_gate) * noise_control
|
816 |
+
logits = logits_gate + logits_noise
|
817 |
+
else:
|
818 |
+
logits = logits_gate
|
819 |
+
|
820 |
+
top_logits, top_indices = logits.topk(min(self.num_selects + 1, self.num_experts), dim=1) # 选择并排序前k+1个权重
|
821 |
+
top_k_logits = top_logits[:, :self.num_selects]
|
822 |
+
top_k_indices = top_indices[:, :self.num_selects]
|
823 |
+
top_k_scores = self.softmax(top_k_logits.to(torch.float32)) if self.use_softmax else top_k_logits
|
824 |
+
top_k_scores = top_k_scores.to(logits.dtype)
|
825 |
+
|
826 |
+
zeros = torch.zeros_like(logits, requires_grad=True, device=logits.device)
|
827 |
+
scores_filtered = zeros.scatter(dim=1, index=top_k_indices, src=top_k_scores) # shape(batch_size, num_experts)
|
828 |
+
importance = scores_filtered.sum(0) # shape(num_experts)
|
829 |
+
|
830 |
+
if self.training:
|
831 |
+
if self.add_noise and self.num_selects != self.num_experts:
|
832 |
+
batch_size = top_logits.size(0)
|
833 |
+
m = top_logits.size(1)
|
834 |
+
top_values_flat = top_logits.flatten()
|
835 |
+
threshold_positions_if_in = torch.arange(batch_size, device=x.device) * m + self.num_selects
|
836 |
+
threshold_if_in = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_in), 1)
|
837 |
+
is_in = torch.gt(logits_noise, threshold_if_in)
|
838 |
+
threshold_positions_if_out = threshold_positions_if_in - 1
|
839 |
+
threshold_if_out = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_out), 1)
|
840 |
+
# is each value currently in the top k.
|
841 |
+
prob_if_in = self.normal.cdf((logits_gate - threshold_if_in) / noise_control)
|
842 |
+
prob_if_out = self.normal.cdf((logits_gate - threshold_if_out) / noise_control)
|
843 |
+
prob = torch.where(is_in, prob_if_in, prob_if_out)
|
844 |
+
load = prob.sum(0)
|
845 |
+
else:
|
846 |
+
load = (scores_filtered > 0).sum(0)
|
847 |
+
if not self.add_noise and not self.warned:
|
848 |
+
warnings.warn('Gradient-trackable implementation for load calculation is only available when "add_noise=True". '
|
849 |
+
'Training without noise will block the gradient from "load" path and lead to inconsistency in optimization objectives.')
|
850 |
+
self.warned = True
|
851 |
+
else:
|
852 |
+
load = (scores_filtered > 0).sum(0)
|
853 |
+
|
854 |
+
if self.use_balance:
|
855 |
+
balance_loss = self.cv_squared(importance) + self.cv_squared(load)
|
856 |
+
balance_loss *= self.balance_loss_weight
|
857 |
+
else:
|
858 |
+
balance_loss = torch.tensor(-100.0, device=x.device)
|
859 |
+
|
860 |
+
return {
|
861 |
+
"topK_indices": top_k_indices,
|
862 |
+
"topK_scores": top_k_scores,
|
863 |
+
"balance_loss": balance_loss,
|
864 |
+
"load": load,
|
865 |
+
"importance": importance,
|
866 |
+
}
|
867 |
+
|
868 |
+
|
869 |
+
class LinearGLUExperts(nn.Module):
|
870 |
+
"""
|
871 |
+
Modified from transformers.models.llama.modeling_llama.LlamaMLP
|
872 |
+
"""
|
873 |
+
|
874 |
+
__constants__ = [
|
875 |
+
"bias",
|
876 |
+
"in_features",
|
877 |
+
"hidden_features",
|
878 |
+
"out_features",
|
879 |
+
"hidden_act",
|
880 |
+
"num_experts",
|
881 |
+
"size_experts",
|
882 |
+
]
|
883 |
+
|
884 |
+
def __init__(
|
885 |
+
self,
|
886 |
+
in_features,
|
887 |
+
hidden_features,
|
888 |
+
out_features,
|
889 |
+
hidden_act,
|
890 |
+
num_experts,
|
891 |
+
size_experts=None,
|
892 |
+
bias=True,
|
893 |
+
device=None,
|
894 |
+
dtype=None,
|
895 |
+
):
|
896 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
897 |
+
super(LinearGLUExperts, self).__init__()
|
898 |
+
self.in_features = in_features
|
899 |
+
self.hidden_features = hidden_features
|
900 |
+
self.out_features = out_features
|
901 |
+
self.hidden_act = hidden_act
|
902 |
+
self.num_experts = num_experts
|
903 |
+
|
904 |
+
if size_experts is None:
|
905 |
+
# all experts share the same number of hidden neurons
|
906 |
+
assert hidden_features % num_experts == 0
|
907 |
+
size_per_expert = hidden_features // num_experts
|
908 |
+
size_experts = [size_per_expert for _ in range(num_experts)]
|
909 |
+
else:
|
910 |
+
# use specified expert sizes
|
911 |
+
assert (
|
912 |
+
len(size_experts) == num_experts
|
913 |
+
and sum(size_experts) == hidden_features
|
914 |
+
)
|
915 |
+
self.size_experts = size_experts
|
916 |
+
|
917 |
+
self.act_fn = ACT2FN[hidden_act]
|
918 |
+
|
919 |
+
self.weight_gate = nn.ParameterList()
|
920 |
+
self.weight_up = nn.ParameterList()
|
921 |
+
self.weight_down = nn.ParameterList()
|
922 |
+
|
923 |
+
for i in range(num_experts):
|
924 |
+
# this matrix will be transposed when performing linear forwarding
|
925 |
+
this_expert_weight_gate = nn.Parameter(
|
926 |
+
torch.empty((size_experts[i], in_features), **factory_kwargs)
|
927 |
+
)
|
928 |
+
# this matrix will be transposed when performing linear forwarding
|
929 |
+
this_expert_weight_up = nn.Parameter(
|
930 |
+
torch.empty((size_experts[i], in_features), **factory_kwargs)
|
931 |
+
)
|
932 |
+
# this matrix will be transposed when performing linear forwarding
|
933 |
+
this_expert_weight_down = nn.Parameter(
|
934 |
+
torch.empty((out_features, size_experts[i]), **factory_kwargs)
|
935 |
+
)
|
936 |
+
self.weight_gate.append(this_expert_weight_gate)
|
937 |
+
self.weight_up.append(this_expert_weight_up)
|
938 |
+
self.weight_down.append(this_expert_weight_down)
|
939 |
+
|
940 |
+
if bias:
|
941 |
+
self.bias_gate = nn.ParameterList()
|
942 |
+
self.bias_up = nn.ParameterList()
|
943 |
+
self.bias_down = nn.ParameterList()
|
944 |
+
|
945 |
+
for i in range(num_experts):
|
946 |
+
this_expert_bias_gate = nn.Parameter(
|
947 |
+
torch.empty((size_experts[i],), **factory_kwargs)
|
948 |
+
)
|
949 |
+
this_expert_bias_up = nn.Parameter(
|
950 |
+
torch.empty((size_experts[i],), **factory_kwargs)
|
951 |
+
)
|
952 |
+
this_expert_bias_down = nn.Parameter(
|
953 |
+
torch.empty((out_features,), **factory_kwargs)
|
954 |
+
)
|
955 |
+
self.bias_gate.append(this_expert_bias_gate)
|
956 |
+
self.bias_up.append(this_expert_bias_up)
|
957 |
+
self.bias_down.append(this_expert_bias_down)
|
958 |
+
else:
|
959 |
+
self.register_parameter("bias_gate", None)
|
960 |
+
self.register_parameter("bias_up", None)
|
961 |
+
self.register_parameter("bias_down", None)
|
962 |
+
|
963 |
+
self.reset_parameters()
|
964 |
+
|
965 |
+
def reset_parameters(self):
|
966 |
+
for i in range(self.num_experts):
|
967 |
+
nn.init.kaiming_uniform_(self.weight_gate[i], a=math.sqrt(5))
|
968 |
+
nn.init.kaiming_uniform_(self.weight_up[i], a=math.sqrt(5))
|
969 |
+
nn.init.kaiming_uniform_(self.weight_down[i], a=math.sqrt(5))
|
970 |
+
if self.bias_gate is not None:
|
971 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_gate[i])
|
972 |
+
bound = 1 / math.sqrt(fan_in)
|
973 |
+
nn.init.uniform_(self.bias_gate[i], -bound, bound)
|
974 |
+
if self.bias_up is not None:
|
975 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_up[i])
|
976 |
+
bound = 1 / math.sqrt(fan_in)
|
977 |
+
nn.init.uniform_(self.bias_up[i], -bound, bound)
|
978 |
+
if self.bias_down is not None:
|
979 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_down[i])
|
980 |
+
bound = 1 / math.sqrt(fan_in)
|
981 |
+
nn.init.uniform_(self.bias_down[i], -bound, bound)
|
982 |
+
|
983 |
+
def forward(self, input, i):
|
984 |
+
gate = self.act_fn(
|
985 |
+
F.linear(
|
986 |
+
input,
|
987 |
+
self.weight_gate[i],
|
988 |
+
self.bias_gate[i] if self.bias_gate is not None else None,
|
989 |
+
)
|
990 |
+
)
|
991 |
+
up = F.linear(
|
992 |
+
input,
|
993 |
+
self.weight_up[i],
|
994 |
+
self.bias_up[i] if self.bias_up is not None else None,
|
995 |
+
)
|
996 |
+
down = F.linear(
|
997 |
+
gate * up,
|
998 |
+
self.weight_down[i],
|
999 |
+
self.bias_down[i] if self.bias_down is not None else None,
|
1000 |
+
)
|
1001 |
+
return down
|
1002 |
+
|
1003 |
+
def extra_repr(self):
|
1004 |
+
return (
|
1005 |
+
"in_features={}, hidden_features={}, out_features={}, hidden_act={},"
|
1006 |
+
" num_experts={}, size_experts={}, bias={}".format(
|
1007 |
+
self.in_features,
|
1008 |
+
self.hidden_features,
|
1009 |
+
self.out_features,
|
1010 |
+
self.hidden_act,
|
1011 |
+
self.num_experts,
|
1012 |
+
self.size_experts,
|
1013 |
+
self.bias_gate is not None,
|
1014 |
+
)
|
1015 |
+
)
|
1016 |
+
|
1017 |
+
|
1018 |
+
class UniversalCalculator(nn.Module):
|
1019 |
+
def __init__(
|
1020 |
+
self,
|
1021 |
+
experts: LinearGLUExperts,
|
1022 |
+
multiply_gate_scores=True,
|
1023 |
+
score_scale_factor=1.0,
|
1024 |
+
add_weight_norm: bool = False,
|
1025 |
+
):
|
1026 |
+
super(UniversalCalculator, self).__init__()
|
1027 |
+
self.experts = experts
|
1028 |
+
# TODO (zhutong): use vmap to boost the training efficiency
|
1029 |
+
# self.experts_vmap = torch.vmap(self.experts)
|
1030 |
+
self.multiply_gate_scores = multiply_gate_scores
|
1031 |
+
self.score_scale_factor = score_scale_factor
|
1032 |
+
self.num_experts = experts.num_experts
|
1033 |
+
self.mlp_norm = None
|
1034 |
+
if multiply_gate_scores and add_weight_norm:
|
1035 |
+
raise NotImplementedError
|
1036 |
+
|
1037 |
+
def reset_experts(self):
|
1038 |
+
self.experts.reset_parameters()
|
1039 |
+
|
1040 |
+
def forward(
|
1041 |
+
self, x, topK_indices, topK_scores, expert_batch_size=None, **kwargs
|
1042 |
+
) -> CalculatorOutput:
|
1043 |
+
batch_size = topK_indices.size(0) # topK_indices: (bsz*seq_len, num_selects)
|
1044 |
+
num_selects = topK_indices.size(1)
|
1045 |
+
topK_indices = topK_indices.flatten() # shape(batch_size*num_selects)
|
1046 |
+
topK_scores = topK_scores.flatten() # shape(batch_size*num_selects)
|
1047 |
+
batch_indices = torch.arange(
|
1048 |
+
batch_size, device=topK_scores.device
|
1049 |
+
).repeat_interleave(num_selects)
|
1050 |
+
|
1051 |
+
_, index_sorted_topK_indices = topK_indices.sort(0)
|
1052 |
+
|
1053 |
+
sorted_topK_scores = topK_scores.index_select(0, index_sorted_topK_indices)
|
1054 |
+
sorted_batch_indices = batch_indices.index_select(0, index_sorted_topK_indices)
|
1055 |
+
|
1056 |
+
if expert_batch_size is None:
|
1057 |
+
expert_batch_size = topK_indices.bincount(
|
1058 |
+
minlength=self.num_experts
|
1059 |
+
).tolist()
|
1060 |
+
|
1061 |
+
sorted_x = x.index_select(0, sorted_batch_indices)
|
1062 |
+
split_x = torch.split(sorted_x, expert_batch_size, dim=0)
|
1063 |
+
|
1064 |
+
expert_outputs = [
|
1065 |
+
self.experts(split_x[i], i)
|
1066 |
+
for i in range(self.num_experts)
|
1067 |
+
if split_x[i].shape[0] > 0
|
1068 |
+
]
|
1069 |
+
|
1070 |
+
# (bsz*seq_len*num_selects, hidden_size)
|
1071 |
+
cat_expert_outputs = torch.cat(expert_outputs, 0)
|
1072 |
+
output_dim = cat_expert_outputs.size(1)
|
1073 |
+
if self.multiply_gate_scores:
|
1074 |
+
if self.mlp_norm is None:
|
1075 |
+
cat_expert_outputs = torch.mul(
|
1076 |
+
cat_expert_outputs,
|
1077 |
+
sorted_topK_scores.reshape(-1, 1) * self.score_scale_factor,
|
1078 |
+
)
|
1079 |
+
# cat_expert_outputs = torch.mul(cat_expert_outputs, sorted_topK_scores.reshape(-1, 1) * 1.0)
|
1080 |
+
else:
|
1081 |
+
cat_expert_outputs = torch.mul(
|
1082 |
+
cat_expert_outputs, sorted_topK_scores.reshape(-1, 1)
|
1083 |
+
)
|
1084 |
+
cat_expert_outputs = self.mlp_norm(cat_expert_outputs)
|
1085 |
+
|
1086 |
+
zeros = torch.zeros(
|
1087 |
+
(batch_size, output_dim),
|
1088 |
+
device=cat_expert_outputs.device,
|
1089 |
+
dtype=cat_expert_outputs.dtype,
|
1090 |
+
)
|
1091 |
+
y = zeros.index_add(0, sorted_batch_indices, cat_expert_outputs)
|
1092 |
+
|
1093 |
+
return CalculatorOutput(hidden_states=y, num_dropped_tokens=torch.tensor(-1.0))
|
1094 |
+
|
1095 |
+
|
1096 |
+
class BaseMoELayer(nn.Module):
|
1097 |
+
def __init__(self):
|
1098 |
+
super(BaseMoELayer, self).__init__()
|
1099 |
+
|
1100 |
+
self.gate: TopKBalancedNoisyGate
|
1101 |
+
self.calculator: UniversalCalculator
|
1102 |
+
|
1103 |
+
def _create_gate(self, **kwargs):
|
1104 |
+
self.gate_type = kwargs.get("gate_type", "TopKBalancedNoisyGate")
|
1105 |
+
|
1106 |
+
if self.gate_type == "TopKBalancedNoisyGate": # noisy gate
|
1107 |
+
self.gate = TopKBalancedNoisyGate(
|
1108 |
+
self.input_size,
|
1109 |
+
self.num_experts,
|
1110 |
+
self.num_selects,
|
1111 |
+
gate_network=kwargs.get("gate_network", "mlp"),
|
1112 |
+
use_softmax=kwargs.get("gate_use_softmax", True),
|
1113 |
+
use_balance=kwargs.get("gate_use_balance", True),
|
1114 |
+
balance_loss_weight=kwargs.get("gate_balance_loss_weight", 1e-2),
|
1115 |
+
add_noise=kwargs.get("gate_add_noise", True),
|
1116 |
+
noise_epsilon=kwargs.get("gate_noise_epsilon", 1e-2),
|
1117 |
+
)
|
1118 |
+
else:
|
1119 |
+
raise NotImplementedError
|
1120 |
+
|
1121 |
+
def _create_calculator(self, experts, **kwargs):
|
1122 |
+
self.calculator_type = kwargs.get("calculator_type", "UniversalCalculator")
|
1123 |
+
|
1124 |
+
if self.calculator_type == "UniversalCalculator": # top K calculator
|
1125 |
+
self.calculator = UniversalCalculator(
|
1126 |
+
experts,
|
1127 |
+
multiply_gate_scores=kwargs.get("multiply_gate_scores", True),
|
1128 |
+
score_scale_factor=kwargs.get("score_scale_factor", 1.0),
|
1129 |
+
add_weight_norm=kwargs.get("add_weight_norm", False),
|
1130 |
+
)
|
1131 |
+
else:
|
1132 |
+
raise NotImplementedError
|
1133 |
+
|
1134 |
+
def forward(self, x, attention_mask=None) -> MoEMlpOutput:
|
1135 |
+
original_shape = x.shape[:-1]
|
1136 |
+
x = x.reshape(-1, self.input_size)
|
1137 |
+
flattened_mask = None
|
1138 |
+
if attention_mask is not None and len(attention_mask.shape) == 2:
|
1139 |
+
flattened_mask = attention_mask.flatten()
|
1140 |
+
flattened_shape = flattened_mask.shape
|
1141 |
+
x = x[flattened_mask.bool()]
|
1142 |
+
|
1143 |
+
gate_outputs: dict = self.gate(x)
|
1144 |
+
calc_outs: CalculatorOutput = self.calculator(x, **gate_outputs)
|
1145 |
+
|
1146 |
+
y = calc_outs.hidden_states
|
1147 |
+
if flattened_mask is not None:
|
1148 |
+
y = torch.zeros(flattened_shape + (self.output_size,), dtype=x.dtype, device=x.device) # (batch_size*seq_len, output_size)
|
1149 |
+
y[flattened_mask.bool()] = calc_outs.hidden_states # (non_padding_num, output_size)
|
1150 |
+
y = y.reshape(original_shape + (self.output_size,))
|
1151 |
+
|
1152 |
+
return MoEMlpOutput(
|
1153 |
+
hidden_states=y,
|
1154 |
+
balance_loss=gate_outputs.get("balance_loss"),
|
1155 |
+
num_dropped_tokens=calc_outs.num_dropped_tokens,
|
1156 |
+
gate_load=gate_outputs.get("load", torch.tensor(-1)),
|
1157 |
+
gate_importance=gate_outputs.get("importance", torch.tensor(-1)),
|
1158 |
+
)
|
1159 |
+
|
1160 |
+
def reset_gate_network(self):
|
1161 |
+
self.gate.reset_gate_network()
|
1162 |
+
|
1163 |
+
def reset_experts(self):
|
1164 |
+
self.calculator.reset_experts()
|
1165 |
+
|
1166 |
+
|
1167 |
+
class LinearGLUMoELayer(BaseMoELayer):
|
1168 |
+
def __init__(
|
1169 |
+
self,
|
1170 |
+
input_size,
|
1171 |
+
hidden_size,
|
1172 |
+
output_size,
|
1173 |
+
hidden_act,
|
1174 |
+
num_experts,
|
1175 |
+
num_selects,
|
1176 |
+
size_experts=None,
|
1177 |
+
bias=True,
|
1178 |
+
**kwargs,
|
1179 |
+
):
|
1180 |
+
super(LinearGLUMoELayer, self).__init__()
|
1181 |
+
assert num_selects <= num_experts
|
1182 |
+
self.input_size = input_size
|
1183 |
+
self.hidden_size = hidden_size
|
1184 |
+
self.output_size = output_size
|
1185 |
+
self.hidden_act = hidden_act
|
1186 |
+
self.num_experts = num_experts
|
1187 |
+
self.num_selects = num_selects
|
1188 |
+
self.size_experts = size_experts
|
1189 |
+
self.bias = bias
|
1190 |
+
|
1191 |
+
experts = LinearGLUExperts(
|
1192 |
+
input_size,
|
1193 |
+
hidden_size,
|
1194 |
+
output_size,
|
1195 |
+
hidden_act,
|
1196 |
+
num_experts,
|
1197 |
+
size_experts=size_experts,
|
1198 |
+
bias=bias,
|
1199 |
+
)
|
1200 |
+
|
1201 |
+
self._create_gate(**kwargs)
|
1202 |
+
self._create_calculator(experts, **kwargs)
|
1203 |
+
|
1204 |
+
|
1205 |
+
class LlamaMoEDecoderLayer(nn.Module):
|
1206 |
+
def __init__(self, config: LlamaMoEConfig, layer_index):
|
1207 |
+
super().__init__()
|
1208 |
+
|
1209 |
+
self.hidden_size = config.hidden_size
|
1210 |
+
# self.self_attn = LlamaAttention(config=config)
|
1211 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_index)
|
1212 |
+
|
1213 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1214 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1215 |
+
|
1216 |
+
gating_config = {
|
1217 |
+
# all gates
|
1218 |
+
"gate_type": config.gate_type,
|
1219 |
+
"gate_network": config.gate_network,
|
1220 |
+
"gate_use_softmax": config.gate_use_softmax,
|
1221 |
+
"gate_use_balance": config.gate_use_balance,
|
1222 |
+
"gate_balance_loss_weight": config.gate_balance_loss_weight,
|
1223 |
+
"gate_add_noise": config.gate_add_noise,
|
1224 |
+
# TopKBalancedNoisyGate
|
1225 |
+
"gate_noise_epsilon": config.gate_noise_epsilon,
|
1226 |
+
}
|
1227 |
+
calculator_config = {
|
1228 |
+
# all calculators
|
1229 |
+
"calculator_type": config.calculator_type,
|
1230 |
+
"multiply_gate_scores": config.multiply_gate_scores,
|
1231 |
+
"score_scale_factor": (
|
1232 |
+
config.score_scale_factor[layer_index]
|
1233 |
+
if isinstance(config.score_scale_factor, list)
|
1234 |
+
else config.score_scale_factor
|
1235 |
+
),
|
1236 |
+
"add_weight_norm": config.add_weight_norm,
|
1237 |
+
# SwitchDropTokenCalculator
|
1238 |
+
"drop_tokens": config.drop_tokens,
|
1239 |
+
"dropped_padding": config.dropped_padding,
|
1240 |
+
"capacity_factor": config.capacity_factor,
|
1241 |
+
}
|
1242 |
+
|
1243 |
+
self.mlp = LinearGLUMoELayer(
|
1244 |
+
input_size=self.hidden_size,
|
1245 |
+
hidden_size=config.intermediate_size,
|
1246 |
+
output_size=self.hidden_size,
|
1247 |
+
hidden_act=config.hidden_act,
|
1248 |
+
num_experts=config.num_experts,
|
1249 |
+
num_selects=config.num_selects,
|
1250 |
+
size_experts=(
|
1251 |
+
config.size_experts[layer_index]
|
1252 |
+
if config.size_experts is not None
|
1253 |
+
else None
|
1254 |
+
),
|
1255 |
+
bias=False,
|
1256 |
+
**gating_config,
|
1257 |
+
**calculator_config,
|
1258 |
+
)
|
1259 |
+
|
1260 |
+
def forward(
|
1261 |
+
self,
|
1262 |
+
hidden_states,
|
1263 |
+
attention_mask=None,
|
1264 |
+
position_ids=None,
|
1265 |
+
past_key_value=None,
|
1266 |
+
output_attentions=False,
|
1267 |
+
use_cache=False,
|
1268 |
+
) -> tuple:
|
1269 |
+
residual = hidden_states
|
1270 |
+
hidden_states = self.input_layernorm(hidden_states)
|
1271 |
+
|
1272 |
+
# Self Attention
|
1273 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
1274 |
+
hidden_states=hidden_states,
|
1275 |
+
attention_mask=attention_mask,
|
1276 |
+
position_ids=position_ids,
|
1277 |
+
past_key_value=past_key_value,
|
1278 |
+
output_attentions=output_attentions,
|
1279 |
+
use_cache=use_cache,
|
1280 |
+
)
|
1281 |
+
hidden_states = residual + hidden_states
|
1282 |
+
|
1283 |
+
# Fully Connected
|
1284 |
+
residual = hidden_states
|
1285 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
1286 |
+
mlp_outs: MoEMlpOutput = self.mlp(hidden_states, attention_mask=attention_mask)
|
1287 |
+
hidden_states = residual + mlp_outs.hidden_states
|
1288 |
+
|
1289 |
+
outputs = (
|
1290 |
+
hidden_states,
|
1291 |
+
mlp_outs.balance_loss,
|
1292 |
+
mlp_outs.num_dropped_tokens,
|
1293 |
+
mlp_outs.gate_load,
|
1294 |
+
mlp_outs.gate_importance,
|
1295 |
+
)
|
1296 |
+
if output_attentions:
|
1297 |
+
outputs += (self_attn_weights,)
|
1298 |
+
if use_cache:
|
1299 |
+
outputs += (present_key_value,)
|
1300 |
+
|
1301 |
+
return outputs
|
1302 |
+
|
1303 |
+
|
1304 |
+
class LlamaMoEPreTrainedModel(PreTrainedModel):
|
1305 |
+
config_class = LlamaMoEConfig
|
1306 |
+
base_model_prefix = "model"
|
1307 |
+
supports_gradient_checkpointing = True
|
1308 |
+
_no_split_modules = ["LlamaMoEDecoderLayer"]
|
1309 |
+
_skip_keys_device_placement = "past_key_values"
|
1310 |
+
_supports_flash_attn_2 = True
|
1311 |
+
|
1312 |
+
def _init_weights(self, module):
|
1313 |
+
std = self.config.initializer_range
|
1314 |
+
if isinstance(module, nn.Linear):
|
1315 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1316 |
+
if module.bias is not None:
|
1317 |
+
module.bias.data.zero_()
|
1318 |
+
elif isinstance(module, nn.Embedding):
|
1319 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1320 |
+
if module.padding_idx is not None:
|
1321 |
+
module.weight.data[module.padding_idx].zero_()
|
1322 |
+
|
1323 |
+
|
1324 |
+
class LlamaMoEModel(LlamaMoEPreTrainedModel):
|
1325 |
+
def __init__(self, config: LlamaMoEConfig):
|
1326 |
+
super().__init__(config)
|
1327 |
+
self.padding_idx = config.pad_token_id
|
1328 |
+
self.vocab_size = config.vocab_size
|
1329 |
+
|
1330 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1331 |
+
self.layers = nn.ModuleList(
|
1332 |
+
[LlamaMoEDecoderLayer(config, i) for i in range(config.num_hidden_layers)]
|
1333 |
+
)
|
1334 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
1335 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
1336 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1337 |
+
self.gradient_checkpointing = False
|
1338 |
+
self.post_init()
|
1339 |
+
|
1340 |
+
def get_input_embeddings(self):
|
1341 |
+
return self.embed_tokens
|
1342 |
+
|
1343 |
+
def set_input_embeddings(self, value):
|
1344 |
+
self.embed_tokens = value
|
1345 |
+
|
1346 |
+
def forward(
|
1347 |
+
self,
|
1348 |
+
input_ids=None,
|
1349 |
+
attention_mask=None,
|
1350 |
+
position_ids=None,
|
1351 |
+
past_key_values=None,
|
1352 |
+
inputs_embeds=None,
|
1353 |
+
use_cache=None,
|
1354 |
+
output_attentions=None,
|
1355 |
+
output_hidden_states=None,
|
1356 |
+
return_dict=None,
|
1357 |
+
):
|
1358 |
+
output_attentions = (
|
1359 |
+
output_attentions
|
1360 |
+
if output_attentions is not None
|
1361 |
+
else self.config.output_attentions
|
1362 |
+
)
|
1363 |
+
output_hidden_states = (
|
1364 |
+
output_hidden_states
|
1365 |
+
if output_hidden_states is not None
|
1366 |
+
else self.config.output_hidden_states
|
1367 |
+
)
|
1368 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1369 |
+
|
1370 |
+
return_dict = (
|
1371 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1372 |
+
)
|
1373 |
+
|
1374 |
+
# retrieve input_ids and inputs_embeds
|
1375 |
+
if input_ids is not None and inputs_embeds is not None:
|
1376 |
+
raise ValueError(
|
1377 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at"
|
1378 |
+
" the same time"
|
1379 |
+
)
|
1380 |
+
elif input_ids is not None:
|
1381 |
+
batch_size, seq_length = input_ids.shape
|
1382 |
+
elif inputs_embeds is not None:
|
1383 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
1384 |
+
else:
|
1385 |
+
raise ValueError(
|
1386 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
1387 |
+
)
|
1388 |
+
|
1389 |
+
if self.gradient_checkpointing and self.training:
|
1390 |
+
if use_cache:
|
1391 |
+
logger.warning_once(
|
1392 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1393 |
+
)
|
1394 |
+
use_cache = False
|
1395 |
+
|
1396 |
+
past_key_values_length = 0
|
1397 |
+
if use_cache:
|
1398 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1399 |
+
if use_legacy_cache:
|
1400 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1401 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1402 |
+
|
1403 |
+
if position_ids is None:
|
1404 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1405 |
+
position_ids = torch.arange(
|
1406 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1407 |
+
)
|
1408 |
+
position_ids = position_ids.unsqueeze(0)
|
1409 |
+
|
1410 |
+
if inputs_embeds is None:
|
1411 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1412 |
+
|
1413 |
+
if self._use_flash_attention_2:
|
1414 |
+
# 2d mask is passed through the layers
|
1415 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1416 |
+
elif self._use_sdpa and not output_attentions:
|
1417 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1418 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1419 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1420 |
+
attention_mask,
|
1421 |
+
(batch_size, seq_length),
|
1422 |
+
inputs_embeds,
|
1423 |
+
past_key_values_length,
|
1424 |
+
)
|
1425 |
+
else:
|
1426 |
+
# 4d mask is passed through the layers
|
1427 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1428 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
1429 |
+
)
|
1430 |
+
|
1431 |
+
hidden_states = inputs_embeds
|
1432 |
+
balance_loss = 0.0
|
1433 |
+
|
1434 |
+
# decoder layers
|
1435 |
+
all_hidden_states = () if output_hidden_states else None
|
1436 |
+
all_self_attns = () if output_attentions else None
|
1437 |
+
next_decoder_cache = None
|
1438 |
+
|
1439 |
+
num_dropped_tokens = ()
|
1440 |
+
gate_load = ()
|
1441 |
+
gate_importance = ()
|
1442 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1443 |
+
if output_hidden_states:
|
1444 |
+
all_hidden_states += (hidden_states,)
|
1445 |
+
|
1446 |
+
if self.gradient_checkpointing and self.training:
|
1447 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1448 |
+
decoder_layer.__call__,
|
1449 |
+
hidden_states,
|
1450 |
+
attention_mask,
|
1451 |
+
position_ids,
|
1452 |
+
past_key_values,
|
1453 |
+
output_attentions,
|
1454 |
+
use_cache,
|
1455 |
+
)
|
1456 |
+
else:
|
1457 |
+
layer_outputs = decoder_layer(
|
1458 |
+
hidden_states,
|
1459 |
+
attention_mask=attention_mask,
|
1460 |
+
position_ids=position_ids,
|
1461 |
+
past_key_value=past_key_values,
|
1462 |
+
output_attentions=output_attentions,
|
1463 |
+
use_cache=use_cache,
|
1464 |
+
)
|
1465 |
+
|
1466 |
+
hidden_states = layer_outputs[0]
|
1467 |
+
if layer_outputs[1] is not None:
|
1468 |
+
balance_loss += layer_outputs[1]
|
1469 |
+
|
1470 |
+
if use_cache:
|
1471 |
+
next_decoder_cache = layer_outputs[6 if output_attentions else 5]
|
1472 |
+
|
1473 |
+
if output_attentions:
|
1474 |
+
all_self_attns += (layer_outputs[5],)
|
1475 |
+
|
1476 |
+
num_dropped_tokens += (layer_outputs[2],)
|
1477 |
+
gate_load += (layer_outputs[3],)
|
1478 |
+
gate_importance += (layer_outputs[4],)
|
1479 |
+
|
1480 |
+
hidden_states = self.norm(hidden_states)
|
1481 |
+
|
1482 |
+
# add hidden states from the last decoder layer
|
1483 |
+
if output_hidden_states:
|
1484 |
+
all_hidden_states += (hidden_states,)
|
1485 |
+
|
1486 |
+
next_cache = None
|
1487 |
+
if use_cache:
|
1488 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1489 |
+
if not return_dict:
|
1490 |
+
return tuple(
|
1491 |
+
v
|
1492 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1493 |
+
if v is not None
|
1494 |
+
)
|
1495 |
+
return BaseMoEModelOutputWithPast(
|
1496 |
+
last_hidden_state=hidden_states,
|
1497 |
+
balance_loss=balance_loss,
|
1498 |
+
past_key_values=next_cache,
|
1499 |
+
hidden_states=all_hidden_states,
|
1500 |
+
attentions=all_self_attns,
|
1501 |
+
num_dropped_tokens=num_dropped_tokens,
|
1502 |
+
gate_load=gate_load,
|
1503 |
+
gate_importance=gate_importance,
|
1504 |
+
)
|
1505 |
+
|
1506 |
+
def reset_gate_network(self):
|
1507 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1508 |
+
decoder_layer.reset_gate_network()
|
1509 |
+
|
1510 |
+
def reset_experts(self):
|
1511 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1512 |
+
decoder_layer.reset_experts()
|
1513 |
+
|
1514 |
+
|
1515 |
+
class LlamaMoEForCausalLM(LlamaMoEPreTrainedModel):
|
1516 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1517 |
+
|
1518 |
+
def __init__(self, config):
|
1519 |
+
super().__init__(config)
|
1520 |
+
self.model = LlamaMoEModel(config)
|
1521 |
+
self.pretraining_tp = config.pretraining_tp
|
1522 |
+
self.vocab_size = config.vocab_size
|
1523 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1524 |
+
|
1525 |
+
# Initialize weights and apply final processing
|
1526 |
+
self.post_init()
|
1527 |
+
|
1528 |
+
def get_input_embeddings(self):
|
1529 |
+
return self.model.embed_tokens
|
1530 |
+
|
1531 |
+
def set_input_embeddings(self, value):
|
1532 |
+
self.model.embed_tokens = value
|
1533 |
+
|
1534 |
+
def get_output_embeddings(self):
|
1535 |
+
return self.lm_head
|
1536 |
+
|
1537 |
+
def set_output_embeddings(self, new_embeddings):
|
1538 |
+
self.lm_head = new_embeddings
|
1539 |
+
|
1540 |
+
def set_decoder(self, decoder):
|
1541 |
+
self.model = decoder
|
1542 |
+
|
1543 |
+
def get_decoder(self):
|
1544 |
+
return self.model
|
1545 |
+
|
1546 |
+
def forward(
|
1547 |
+
self,
|
1548 |
+
input_ids=None,
|
1549 |
+
attention_mask=None,
|
1550 |
+
position_ids=None,
|
1551 |
+
past_key_values=None,
|
1552 |
+
inputs_embeds=None,
|
1553 |
+
labels=None,
|
1554 |
+
use_cache=None,
|
1555 |
+
output_attentions=None,
|
1556 |
+
output_hidden_states=None,
|
1557 |
+
return_dict=None,
|
1558 |
+
**kwargs,
|
1559 |
+
):
|
1560 |
+
output_attentions = (
|
1561 |
+
output_attentions
|
1562 |
+
if output_attentions is not None
|
1563 |
+
else self.config.output_attentions
|
1564 |
+
)
|
1565 |
+
output_hidden_states = (
|
1566 |
+
output_hidden_states
|
1567 |
+
if output_hidden_states is not None
|
1568 |
+
else self.config.output_hidden_states
|
1569 |
+
)
|
1570 |
+
return_dict = (
|
1571 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1572 |
+
)
|
1573 |
+
|
1574 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1575 |
+
outputs: BaseMoEModelOutputWithPast = self.model(
|
1576 |
+
input_ids=input_ids,
|
1577 |
+
attention_mask=attention_mask,
|
1578 |
+
position_ids=position_ids,
|
1579 |
+
past_key_values=past_key_values,
|
1580 |
+
inputs_embeds=inputs_embeds,
|
1581 |
+
use_cache=use_cache,
|
1582 |
+
output_attentions=output_attentions,
|
1583 |
+
output_hidden_states=output_hidden_states,
|
1584 |
+
return_dict=return_dict,
|
1585 |
+
)
|
1586 |
+
|
1587 |
+
hidden_states = outputs.last_hidden_state
|
1588 |
+
logits = self.lm_head(hidden_states)
|
1589 |
+
|
1590 |
+
loss = None
|
1591 |
+
if labels is not None:
|
1592 |
+
# Shift so that tokens < n predict n
|
1593 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1594 |
+
shift_labels = labels[..., 1:].contiguous()
|
1595 |
+
# Flatten the tokens
|
1596 |
+
loss_fct = nn.CrossEntropyLoss()
|
1597 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1598 |
+
shift_labels = shift_labels.view(-1)
|
1599 |
+
# Enable model parallelism
|
1600 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1601 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1602 |
+
if outputs.balance_loss is not None and outputs.balance_loss > 0:
|
1603 |
+
loss += outputs.balance_loss
|
1604 |
+
|
1605 |
+
if not return_dict:
|
1606 |
+
output = (logits,) + outputs[1:]
|
1607 |
+
return (loss,) + output if loss is not None else output
|
1608 |
+
|
1609 |
+
return MoECausalLMOutputWithPast(
|
1610 |
+
loss=loss,
|
1611 |
+
logits=logits,
|
1612 |
+
past_key_values=outputs.past_key_values,
|
1613 |
+
hidden_states=outputs.hidden_states,
|
1614 |
+
attentions=outputs.attentions,
|
1615 |
+
num_dropped_tokens=outputs.num_dropped_tokens,
|
1616 |
+
balance_loss=outputs.balance_loss,
|
1617 |
+
gate_load=outputs.gate_load,
|
1618 |
+
gate_importance=outputs.gate_importance,
|
1619 |
+
)
|
1620 |
+
|
1621 |
+
def prepare_inputs_for_generation(
|
1622 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1623 |
+
):
|
1624 |
+
if past_key_values is not None:
|
1625 |
+
if isinstance(past_key_values, Cache):
|
1626 |
+
cache_length = past_key_values.get_seq_length()
|
1627 |
+
past_length = past_key_values.seen_tokens
|
1628 |
+
max_cache_length = past_key_values.get_max_length()
|
1629 |
+
else:
|
1630 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1631 |
+
max_cache_length = None
|
1632 |
+
|
1633 |
+
# Keep only the unprocessed tokens:
|
1634 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1635 |
+
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
1636 |
+
# input)
|
1637 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1638 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1639 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1640 |
+
# input_ids based on the past_length.
|
1641 |
+
elif past_length < input_ids.shape[1]:
|
1642 |
+
input_ids = input_ids[:, past_length:]
|
1643 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1644 |
+
|
1645 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1646 |
+
if (
|
1647 |
+
max_cache_length is not None
|
1648 |
+
and attention_mask is not None
|
1649 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1650 |
+
):
|
1651 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1652 |
+
|
1653 |
+
position_ids = kwargs.get("position_ids", None)
|
1654 |
+
if attention_mask is not None and position_ids is None:
|
1655 |
+
# create position_ids on the fly for batch generation
|
1656 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1657 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1658 |
+
if past_key_values:
|
1659 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1660 |
+
|
1661 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1662 |
+
if inputs_embeds is not None and past_key_values is None:
|
1663 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1664 |
+
else:
|
1665 |
+
model_inputs = {"input_ids": input_ids}
|
1666 |
+
|
1667 |
+
model_inputs.update(
|
1668 |
+
{
|
1669 |
+
"position_ids": position_ids,
|
1670 |
+
"past_key_values": past_key_values,
|
1671 |
+
"use_cache": kwargs.get("use_cache"),
|
1672 |
+
"attention_mask": attention_mask,
|
1673 |
+
}
|
1674 |
+
)
|
1675 |
+
return model_inputs
|
1676 |
+
|
1677 |
+
@staticmethod
|
1678 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1679 |
+
reordered_past = ()
|
1680 |
+
for layer_past in past_key_values:
|
1681 |
+
reordered_past += (
|
1682 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1683 |
+
)
|
1684 |
+
return reordered_past
|
1685 |
+
|
1686 |
+
def reset_gate_network(self):
|
1687 |
+
self.model.reset_gate_network()
|
1688 |
+
|
1689 |
+
def reset_experts(self):
|
1690 |
+
self.model.reset_experts()
|
sampling_info/100/load.pdf
ADDED
Binary file (12.6 kB). View file
|
|
sampling_info/100/prob_map.pdf
ADDED
Binary file (13.5 kB). View file
|
|
sampling_info/100/sim.pdf
ADDED
Binary file (11.5 kB). View file
|
|
sampling_info/1000/load.pdf
ADDED
Binary file (12.6 kB). View file
|
|
sampling_info/1000/prob_map.pdf
ADDED
Binary file (13.6 kB). View file
|
|
sampling_info/1000/sim.pdf
ADDED
Binary file (11.5 kB). View file
|
|
sampling_info/1100/load.pdf
ADDED
Binary file (12.6 kB). View file
|
|
sampling_info/1100/prob_map.pdf
ADDED
Binary file (13.6 kB). View file
|
|
sampling_info/1100/sim.pdf
ADDED
Binary file (11.5 kB). View file
|
|
sampling_info/1200/load.pdf
ADDED
Binary file (12.6 kB). View file
|
|
sampling_info/1200/prob_map.pdf
ADDED
Binary file (13.6 kB). View file
|
|
sampling_info/1200/sim.pdf
ADDED
Binary file (11.5 kB). View file
|
|
sampling_info/1300/load.pdf
ADDED
Binary file (12.6 kB). View file
|
|
sampling_info/1300/prob_map.pdf
ADDED
Binary file (13.6 kB). View file
|
|
sampling_info/1300/sim.pdf
ADDED
Binary file (11.5 kB). View file
|
|
sampling_info/1400/load.pdf
ADDED
Binary file (12.6 kB). View file
|
|
sampling_info/1400/prob_map.pdf
ADDED
Binary file (13.6 kB). View file
|
|
sampling_info/1400/sim.pdf
ADDED
Binary file (11.5 kB). View file
|
|
sampling_info/1500/load.pdf
ADDED
Binary file (12.6 kB). View file
|
|
sampling_info/1500/prob_map.pdf
ADDED
Binary file (13.6 kB). View file
|
|
sampling_info/1500/sim.pdf
ADDED
Binary file (11.5 kB). View file
|
|
sampling_info/1600/load.pdf
ADDED
Binary file (12.6 kB). View file
|
|
sampling_info/1600/prob_map.pdf
ADDED
Binary file (13.6 kB). View file
|
|
sampling_info/1600/sim.pdf
ADDED
Binary file (11.5 kB). View file
|
|
sampling_info/1700/load.pdf
ADDED
Binary file (12.6 kB). View file
|
|
sampling_info/1700/prob_map.pdf
ADDED
Binary file (13.6 kB). View file
|
|
sampling_info/1700/sim.pdf
ADDED
Binary file (11.5 kB). View file
|
|
sampling_info/1800/load.pdf
ADDED
Binary file (12.6 kB). View file
|
|
sampling_info/1800/prob_map.pdf
ADDED
Binary file (13.6 kB). View file
|
|
sampling_info/1800/sim.pdf
ADDED
Binary file (11.5 kB). View file
|
|
sampling_info/1900/load.pdf
ADDED
Binary file (12.6 kB). View file
|
|
sampling_info/1900/prob_map.pdf
ADDED
Binary file (13.6 kB). View file
|
|
sampling_info/1900/sim.pdf
ADDED
Binary file (11.5 kB). View file
|
|
sampling_info/200/load.pdf
ADDED
Binary file (12.6 kB). View file
|
|
sampling_info/200/prob_map.pdf
ADDED
Binary file (13.6 kB). View file
|
|
sampling_info/200/sim.pdf
ADDED
Binary file (11.5 kB). View file
|
|
sampling_info/2000/load.pdf
ADDED
Binary file (12.6 kB). View file
|
|
sampling_info/2000/prob_map.pdf
ADDED
Binary file (13.6 kB). View file
|
|
sampling_info/2000/sim.pdf
ADDED
Binary file (11.5 kB). View file
|
|
sampling_info/300/load.pdf
ADDED
Binary file (12.6 kB). View file
|
|