SpartanLondoner commited on
Commit
b3ef67b
·
1 Parent(s): a72d119

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 239.74 +/- 25.36
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 281.44 +/- 19.79
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7df26ba38430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7df26ba384c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7df26ba38550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7df26ba385e0>", "_build": "<function ActorCriticPolicy._build at 0x7df26ba38670>", "forward": "<function ActorCriticPolicy.forward at 0x7df26ba38700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7df26ba38790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7df26ba38820>", "_predict": "<function ActorCriticPolicy._predict at 0x7df26ba388b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7df26ba38940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7df26ba389d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7df26ba38a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7df26ba581c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696764607526596535, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2UET7nVq0/tn4fP0sEtr77GRY+APqXPgAAAAAAAAAAAImsvKVGmT9GZLy8ol2mvt6CIr3qQpW9AAAAAAAAAADGTBC+4WC6ulKmMzrr0Uc2qh+hOQXLT7kAAIA/AACAP+YHg71cyxC6jkmUOINVDza6Psu6VgGttwAAgD8AAIA/ml2zO1Ly6DwmiiO+ABImvmnhV7yuXTy9AAAAAAAAAACa3QG9XBswumvzeTpgHEs1iX/augI5lLkAAIA/AACAP9r+8L0plhA7+w6UvaC52L3LaNE72+V7vQAAAAAAAAAAADWcvPZcLrruv467pnH5NnJ/qzqqpF+2AACAPwAAgD+zObk9X0yUP+pFfD7amcW+QR/5Pe2OYT0AAAAAAAAAAJodjLzDoXi6cEvSOUBNkDS1iIi7Nbj1uAAAgD8AAIA/mrw/va5ni7okkgI6MGc4tp+qFLuKkha5AACAPwAAgD+a8tG9uMa+uTayDrlm/xuyQauJuwXfKTgAAIA/AAAAAMCQl72knVK7nQF5vCefNDw+k5+8CjkhPQAAgD8AAIA/5lsxvSkYbrrNOqm3czaPsm6KebrbCsI2AACAPwAAgD9mWvg7SMH1uJgEiLxeFVW0P1RoOhYi9TMAAIA/AACAPxM3KL69ZTc8xXS8O9vpCbo3eb69m4DbOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGad8z67/XKMAWyUTegDjAF0lEdAqrO84zabnXV9lChoBkdAZNq+/QBxP2gHTegDaAhHQKq1i6BiCrd1fZQoaAZHQGXS2V3Ux21oB03oA2gIR0Cqu0WYnfEXdX2UKGgGR0BiETt9hJAdaAdN6ANoCEdAqr++m+Cbt3V9lChoBkdAZEHkQPI4l2gHTegDaAhHQKrCVmcOLBN1fZQoaAZHQGR0AX/HYHxoB03oA2gIR0Cqx86Q3gk1dX2UKGgGR0BiKWTRplBhaAdN6ANoCEdAqsgpDVpblnV9lChoBkdAXxutaIN3GGgHTegDaAhHQKrKr+CsfaJ1fZQoaAZHQGIJ2X9itq5oB03oA2gIR0CqzQMIu5BkdX2UKGgGR0Bji8deY2KmaAdN6ANoCEdAqs0ZFG5MDnV9lChoBkdAYH/4MWoFV2gHTegDaAhHQKrN0pcX3xp1fZQoaAZHQGXkP9tMwlBoB03oA2gIR0CqzfE4m1IAdX2UKGgGR0BlWwZwXIluaAdN6ANoCEdAqs4D/lyR0XV9lChoBkdAX1/6+FlCkWgHTegDaAhHQKrOFc6eXiR1fZQoaAZHQGZej3/Pw/hoB03oA2gIR0Cq3KgeA/cGdX2UKGgGR0Bk9F2JSBK+aAdN6ANoCEdAqt7D8P4EfXV9lChoBkdAYuZ37k4m1WgHTegDaAhHQKre0vOhTOx1fZQoaAZHQGCS9JjDsMRoB03oA2gIR0Cq4CoRAbADdX2UKGgGR0Bj+xP69CeFaAdN6ANoCEdAquQN6ol2NnV9lChoBkdAZdVocrAgxWgHTegDaAhHQKrnUMQ2/BZ1fZQoaAZHQGBTkdeY2KloB03oA2gIR0Cq6cEvboKVdX2UKGgGR0BhLFbor4FiaAdN6ANoCEdAqu7v7BO58XV9lChoBkdAXyHV7Qb++GgHTegDaAhHQKrvTtu1ndx1fZQoaAZHQGGGnhKlHjJoB03oA2gIR0Cq8lS9VWCFdX2UKGgGR0Bhbi/CZWq+aAdN6ANoCEdAqvWNM9KVZHV9lChoBkdAYBmbp/wy7GgHTegDaAhHQKr1rECvHLl1fZQoaAZHQGeuP+GXXy1oB03oA2gIR0Cq9rhr30wrdX2UKGgGR0BjeMxM36yjaAdN6ANoCEdAqvbg/C66KHV9lChoBkdAZpTUUfxMFmgHTegDaAhHQKr2/M6ij+J1fZQoaAZHQGHwmelKsdVoB03oA2gIR0Cq9xbBoEjgdX2UKGgGR0BnCSInBtUGaAdN6ANoCEdAqvwqFTNt7HV9lChoBkdAWsIRkEs8PmgHTegDaAhHQKsGYjmjj711fZQoaAZHQGGaSCFsYVJoB03oA2gIR0CrBnJS75EddX2UKGgGR0Bm5sD+zdDZaAdN6ANoCEdAqwf0B0ZFX3V9lChoBkdAZSuBjFyaNWgHTegDaAhHQKsL82kSElF1fZQoaAZHQGc+c+A3DN1oB03oA2gIR0CrDyuPeYUndX2UKGgGR0BiAr0Dlo12aAdN6ANoCEdAqxI6R6nivXV9lChoBkdAbrvx82JizGgHTeACaAhHQKsXF5CWu5l1fZQoaAZHQFy/5nlGPPtoB03oA2gIR0CrGOKOT7l8dX2UKGgGR0BdoVCgK4QSaAdN6ANoCEdAqxlb5TIeYHV9lChoBkdARAqbKA8SwmgHTR8BaAhHQKsaRLZBcA11fZQoaAZHQGMITsQd0aJoB03oA2gIR0CrG9RXfZVXdX2UKGgGR0Bk0EaZQYUGaAdN6ANoCEdAqx3mWUr08XV9lChoBkdAYrsaRZEDyWgHTegDaAhHQKsd+f4AS391fZQoaAZHQGQdK28Zk09oB03oA2gIR0CrHp+xOclPdX2UKGgGR0Bgncy57PY4aAdN6ANoCEdAqx7MMd92HXV9lChoBkdAXB7H0btJF2gHTegDaAhHQKse3WLgn+h1fZQoaAZHQGTWbxEv0yxoB03oA2gIR0CrImIxYaHcdX2UKGgGR0BnXa5VfeDWaAdN6ANoCEdAqyyX9WIXTHV9lChoBkdAZeQCHymQ82gHTegDaAhHQKssp1dPci51fZQoaAZHQGRc4f4h2W9oB03oA2gIR0CrLgdUsFt9dX2UKGgGR0Bj8kyzollcaAdN6ANoCEdAqzNodp7CznV9lChoBkdAYHdAi3XqaGgHTegDaAhHQKs60g4ffXR1fZQoaAZHQGYlN96Tnq5oB03oA2gIR0CrPuyJCSiedX2UKGgGR0BwK664Ds+naAdNBgNoCEdAq0AGfbsWwnV9lChoBkdAYJRD1GsmwGgHTegDaAhHQKtAWU9pyp91fZQoaAZHQGMz+kYXO4ZoB03oA2gIR0CrQK5KODJ2dX2UKGgGR0BjwQDV6NVBaAdN6ANoCEdAq0FllZowmHV9lChoBkdAZEHcnE2pAGgHTegDaAhHQKtC/DkU9IR1fZQoaAZHQGCbZmI0qH5oB03oA2gIR0CrRSMw1zhhdX2UKGgGR0Bk9g0waisXaAdN6ANoCEdAq0U4etCAtnV9lChoBkdAYW7863iJf2gHTegDaAhHQKtGDGPPszF1fZQoaAZHQGR73YL9deJoB03oA2gIR0CrRh+irT6SdX2UKGgGR0BivadnTRYzaAdN6ANoCEdAq0oCTW5H3HV9lChoBkdAY3eAkLQXymgHTegDaAhHQKtXI8jAzpJ1fZQoaAZHQGOm5+pfhMtoB03oA2gIR0CrVzO2RaHLdX2UKGgGR0BkljwDvE0jaAdN6ANoCEdAq1ibYbsF+3V9lChoBkdAcCGgNPP9k2gHTeMBaAhHQKtZD3A2ycF1fZQoaAZHQGdJeTV2A5JoB03oA2gIR0CrW/D9fkWAdX2UKGgGR0Blocm0E5hjaAdN6ANoCEdAq2DA3zcynHV9lChoBkdAZkOoGY8dP2gHTegDaAhHQKtkIaWom5V1fZQoaAZHQGKucGTs6aNoB03oA2gIR0CrZQQdKdxydX2UKGgGR0Bhsl34bjtHaAdN6ANoCEdAq2VOyiVSoHV9lChoBkdAXXireZXuE2gHTegDaAhHQKtlmTakAPx1fZQoaAZHQGQxOYQarFRoB03oA2gIR0CrZ8YuscQzdX2UKGgGR0BiXJbD/EOzaAdN6ANoCEdAq2nqNOuaF3V9lChoBkdAZwy274BV/GgHTegDaAhHQKtp/vAGjbl1fZQoaAZHQGN2IIWxhUloB03oA2gIR0CravMFUyYYdX2UKGgGR0BdqcTJyQxOaAdN6ANoCEdAq2sPjU/fO3V9lChoBkdAZlwon8baRWgHTegDaAhHQKtwo4XGff51fZQoaAZHQGPPZoPCl8BoB03oA2gIR0CrfGwA2hqTdX2UKGgGR0BlfffZVXFMaAdN6ANoCEdAq3x9THbRGHV9lChoBkdAYKQAQxveg2gHTegDaAhHQKt+BEETxoZ1fZQoaAZHQGXjQc5sCT5oB03oA2gIR0Crfok9Mbm2dX2UKGgGR0BuSsxKxs2vaAdNAgJoCEdAq4ElwPy08nV9lChoBkdAY4wml67dzmgHTegDaAhHQKuB4gQHzH11fZQoaAZHQGRAIwM6RyRoB03oA2gIR0Crh3iRfWtmdX2UKGgGR0BwRWDHwPRRaAdNUAFoCEdAq4e3M4cWCXV9lChoBkdAY/ZCNS619mgHTegDaAhHQKuL/VXFLnN1fZQoaAZHQGAQnqNZNfxoB03oA2gIR0CrjVpvP1L8dX2UKGgGR0BkmOu/1xsEaAdN6ANoCEdAq43Fq59Vm3V9lChoBkdAZBcPK+zt1WgHTegDaAhHQKuONgVoHs11fZQoaAZHQHCnjASFoL5oB03PAmgIR0CrkScC5mROdX2UKGgGR0BkfrpmmLtNaAdN6ANoCEdAq5Q7RYzSC3V9lChoBkdAZBCK3NLUTmgHTegDaAhHQKuUTlYEGJN1fZQoaAZHQGSS2/JvHcVoB03oA2gIR0CrlRA0TDfndX2UKGgGR0Bjk7IxQBPsaAdN6ANoCEdAq5UllyzXz3V9lChoBkdAPm7ofSx7iWgHS/5oCEdAq5rLHsC1Z3V9lChoBkdAZyo7FsHjZWgHTegDaAhHQKubA4n4O+Z1fZQoaAZHQGfGZxiobXJoB03oA2gIR0CrmxJx3mmtdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b5f607df760>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b5f607df7f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b5f607df880>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b5f607df910>", "_build": "<function ActorCriticPolicy._build at 0x7b5f607df9a0>", "forward": "<function ActorCriticPolicy.forward at 0x7b5f607dfa30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b5f607dfac0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b5f607dfb50>", "_predict": "<function ActorCriticPolicy._predict at 0x7b5f607dfbe0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b5f607dfc70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b5f607dfd00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b5f607dfd90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b5f607e0fc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696787192725924688, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1RNb0iaKk/OQsZvru7+75s6pm9CF3RvQAAAAAAAAAACw2ovphxPD9ud/E9PO8jv5HA6L7meGA+AAAAAAAAAACaUgq9rX24P4jjA77+jnC+y20pvfoJzr0AAAAAAAAAABrnWb7T6Cw/XsD8vZZVOL/xh9q+Yv0YugAAAAAAAAAAzUaovI/qVbqIlnszGmF6Lk1cCDvIWb+zAACAPwAAgD8zJ368n06Vu+YgGT6igIU9UYJJvIVG6jwAAIA/AACAP/1Hlz49RTU/yqJevpZiO790VbY+fQJkvgAAAAAAAAAAAEANO7mLRD5J9pu9g2Mnv/08jbziVZO9AAAAAAAAAAAAkOG8XDsNutJCj7ZALeixc0i0Oqh7pTUAAIA/AACAPxqvr735+0k/gkSlvXiLg7/S9SK++kQovQAAAAAAAAAAZughPDjorbsKLA+6UsGSPGTI/Txb+Xi9AACAPwAAgD8z45S69qQHusJPKTzbQR6yAhgoulL5/LMAAIA/AACAP80Mczu49vq5Mcy5PbKhIzMZY/G52AIqMwAAgD8AAIA/AMwyPalxf7zVIWq+C0hUvchgXTzCG6y+AACAPwAAgD/NFNm88oqXP2BAEb6Lck6/LOyMvFrhk70AAAAAAAAAAI3+Er6keak/3XP0vvG6Ab+/5Ye+YGpbvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGPmPo3aSOMAWyUS62MAXSUR0Ci6pQ7T2FndX2UKGgGR0BzOxgy/KyOaAdLzGgIR0Ci6p384xUOdX2UKGgGR0BxgMqAjIJaaAdLvWgIR0Ci6qlf7aZhdX2UKGgGR0Bxmwr7O3UhaAdLx2gIR0Ci6uyhJyyVdX2UKGgGR0BxIk3cYZVGaAdLnWgIR0Ci6u0z9CNTdX2UKGgGR0BwYqAtnPE9aAdLp2gIR0Ci6ybSJCSidX2UKGgGR0B0Goe3hGYsaAdLsmgIR0Ci6y7wjMV2dX2UKGgGR0BK/1wHZ9NOaAdLY2gIR0Ci60Bt1p0wdX2UKGgGR0Bzf554W1twaAdLvmgIR0Ci60CkoF3ZdX2UKGgGR0BzSqhh6SkkaAdLzmgIR0Ci62rjxTbWdX2UKGgGR0BveTwe/5+IaAdLmmgIR0Ci632Gh24edX2UKGgGR0BBviU5dWyUaAdLdGgIR0Ci65Qt8NQTdX2UKGgGR0By5asNlRP5aAdL0WgIR0Ci65MuvlltdX2UKGgGR0Byx+AFxGUfaAdLw2gIR0Ci66EVFhG6dX2UKGgGR0BvdRaV2Rq5aAdLp2gIR0Ci69mb9ZRsdX2UKGgGR0Bv+fNcGC7LaAdLoGgIR0Ci6+fACW/rdX2UKGgGR0BxuaLyc0+DaAdLwWgIR0Ci6/QsoUi7dX2UKGgGR0By/fBfrrxBaAdLzmgIR0Ci7AtH6MzedX2UKGgGR0B0Ov+kxh2GaAdLuWgIR0Ci7DNz0Yj0dX2UKGgGR0BxAGYUnG83aAdLoWgIR0Ci7Evl+3H8dX2UKGgGR0BxYeqMm4RVaAdLjGgIR0Ci7IEtNBWxdX2UKGgGR0ByE0RaouPFaAdLwGgIR0Ci7LQ8wHqvdX2UKGgGR0BzFq/bj94vaAdLvGgIR0Ci7PxKYiPidX2UKGgGR0BxnMMtsenyaAdLvGgIR0Ci7SDdpItldX2UKGgGR0Bzr3vAoG6gaAdLxGgIR0Ci7SQ2dd3TdX2UKGgGR0Bxoh8D0UXYaAdLomgIR0Ci7V2WQfZFdX2UKGgGR0ByQOhzvJA/aAdL2mgIR0Ci7cqynk1edX2UKGgGR0BzUU+iaiK0aAdLy2gIR0Ci7d7A+IM0dX2UKGgGR0BzC8RqXWvsaAdLy2gIR0Ci7d4tYjjadX2UKGgGR0ByYHMGHHmzaAdL4mgIR0Ci7gNiH6/JdX2UKGgGR0BzXr+vQnhLaAdLs2gIR0Ci7f+E7GNrdX2UKGgGR0ByGkN4JNTMaAdLtGgIR0Ci7ieCK77LdX2UKGgGR0BxwKjO9nK5aAdLq2gIR0Ci7mQID5j6dX2UKGgGR0Bzg64H5aePaAdLxWgIR0Ci7n1OCXhPdX2UKGgGR0ByeqrtE5QxaAdLr2gIR0Ci7or127nQdX2UKGgGR0B0dyLcbiqAaAdL3GgIR0Ci7pEeyRjjdX2UKGgGR0BxZtbaAWi2aAdLomgIR0Ci7pYKYzBRdX2UKGgGR0Bw6aCaqjrSaAdLl2gIR0Ci7t4FRpDedX2UKGgGR0BvsHDUExIraAdLr2gIR0Ci7uNtygf2dX2UKGgGR0A/GU8FINExaAdLWWgIR0Ci7uqODJ2ddX2UKGgGR0BxSLMRpUPyaAdLpWgIR0Ci7ye+/QBxdX2UKGgGR0BwTH9WIXTFaAdLqWgIR0Ci7zcHWz4UdX2UKGgGR0BygL58BuGcaAdLvWgIR0Ci77IgeRxMdX2UKGgGR0BykVS1maphaAdLpmgIR0Ci79wC8vmHdX2UKGgGR0BO9GI9C/oJaAdLemgIR0Ci8ADKxLTQdX2UKGgGR0Bx9nxx1gYxaAdLoGgIR0Ci8BclPacqdX2UKGgGR0BzJPhsImgKaAdLxGgIR0Ci8C4ixFAndX2UKGgGR0BvLZTAFgUlaAdLoGgIR0Ci8FX71qWUdX2UKGgGR0BwQvzFuNxVaAdLmmgIR0Ci8F2iL2pRdX2UKGgGR0BydYQbuMMraAdL0mgIR0Ci8JCHymQ9dX2UKGgGR0BzNWT9sJpnaAdL1mgIR0Ci8KKUeMhpdX2UKGgGR0BINvp6hQFcaAdLe2gIR0Ci8M1hCtzTdX2UKGgGR0B0NoOG0u14aAdLuGgIR0Ci8OOLBKtgdX2UKGgGR0ByAlYJVsDXaAdLoWgIR0Ci8OvZZjhDdX2UKGgGR0BzsYKZ2IO6aAdLz2gIR0Ci8Se2uxKQdX2UKGgGR0ByuTfTCtRvaAdLr2gIR0Ci8ScN6PbPdX2UKGgGR0BylUPuogmraAdLyWgIR0Ci8XeVcD8tdX2UKGgGR0BydqDJ2dNGaAdLxmgIR0Ci8b66J66bdX2UKGgGR0By4BxZMcp9aAdLoWgIR0Ci8dUvPC2udX2UKGgGR0ByHJId2gWaaAdLoGgIR0Ci8lG7rcCYdX2UKGgGR0BxLYkB0ZFYaAdLnmgIR0Ci8n5bILgGdX2UKGgGR0Bv4a/wiJO4aAdLoGgIR0Ci8n6bF0gbdX2UKGgGR0BxXozxgAp8aAdLvmgIR0Ci8o6aCtihdX2UKGgGR0BzmS3d9Dx9aAdLyWgIR0Ci8o3xWkrPdX2UKGgGR0BwB1ltj0+UaAdLqWgIR0Ci8uX8n/kvdX2UKGgGR0BzGcV2zOX3aAdL0mgIR0Ci8uVXeWOZdX2UKGgGR0Bv4mvGIbfhaAdLp2gIR0Ci8yXjU/fPdX2UKGgGR0Bxq80ALiMpaAdLtmgIR0Ci8z/Z/Tb4dX2UKGgGR0Bz+l3np0OmaAdLyGgIR0Ci80HCoCMhdX2UKGgGR0ByveLxZuAJaAdLvGgIR0Ci82dMCcPOdX2UKGgGR0ByyyK4x1xLaAdLrmgIR0Ci833lCCz1dX2UKGgGR0A20MPSUkfLaAdLWWgIR0Ci87kaMrEtdX2UKGgGR0ByL81gpjMFaAdLv2gIR0Ci87dszl90dX2UKGgGR0A/5/H5rP+oaAdLYWgIR0Ci88XeWOZLdX2UKGgGR0BzRh6/qPfbaAdLyWgIR0Ci9CVrZamodX2UKGgGR0Bx6+QDFId3aAdLvmgIR0Ci9EYZ/CqIdX2UKGgGR0BxrCEGqxTsaAdLyGgIR0Ci9IEKeCkHdX2UKGgGR0BxXzAmAskIaAdLo2gIR0Ci9KpEQXhwdX2UKGgGR0By0WyquKXOaAdLwWgIR0Ci9OtsnAqNdX2UKGgGR0ByQBky1uzhaAdLyGgIR0Ci9UVNxlxwdX2UKGgGR0ByNJ+qioKlaAdLpGgIR0Ci9WeIl+mWdX2UKGgGR0BxX++WWyC4aAdLtWgIR0Ci9WIIfKZEdX2UKGgGR0BxS61eBxxUaAdLq2gIR0Ci9ZpqREF4dX2UKGgGR0Byhsnw5NoKaAdLymgIR0Ci9a2Ifr8jdX2UKGgGR0BysNbqyGBXaAdLsWgIR0Ci9dVIqbz9dX2UKGgGR0ByUFNUOuq4aAdLmWgIR0Ci9ePH1e0HdX2UKGgGR0BxVgH3UQTVaAdLq2gIR0Ci9hONHYpVdX2UKGgGR0BwdWsT37DVaAdLsmgIR0Ci9iim2sq8dX2UKGgGR0B0wk14xDb8aAdL1WgIR0Ci9iekgwGodX2UKGgGR0BzY14VymygaAdLx2gIR0Ci9jZmyxA0dX2UKGgGR0By7olruYx+aAdLq2gIR0Ci9qAr6LwXdX2UKGgGR0ByykatLcsUaAdLwmgIR0Ci9sOaWom5dX2UKGgGR0A45Il+mWMTaAdLXWgIR0Ci9sY82aUidX2UKGgGR0Bwk3CAMDwIaAdLmGgIR0Ci9t+pfhMrdX2UKGgGR0ByfNfMOf/WaAdLzWgIR0Ci9xSCWeH0dX2UKGgGR0Byal97WuoxaAdLwWgIR0Ci9xIxpL26dX2UKGgGR0BzKS1og3cYaAdLqGgIR0Ci90HqeK8+dX2UKGgGR0Bvv6GL1mJ4aAdLqmgIR0Ci9009pyp8dX2UKGgGR0BvHOsaKk2xaAdLmmgIR0Ci91VqFh5PdX2UKGgGR0Bxo38xbjcVaAdLvGgIR0Ci91tP557gdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:112b52888eb9ae749f54482ec5e64c52d66707a533e732ac3f25295ed06391fe
3
- size 146755
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5931394ec66b246dd49bb9650da0b39d558b49e4e9598211e73ec6d013dbdd5b
3
+ size 146624
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7df26ba38430>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7df26ba384c0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7df26ba38550>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7df26ba385e0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7df26ba38670>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7df26ba38700>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7df26ba38790>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7df26ba38820>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7df26ba388b0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7df26ba38940>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7df26ba389d0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7df26ba38a60>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7df26ba581c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1015808,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1696764607526596535,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2UET7nVq0/tn4fP0sEtr77GRY+APqXPgAAAAAAAAAAAImsvKVGmT9GZLy8ol2mvt6CIr3qQpW9AAAAAAAAAADGTBC+4WC6ulKmMzrr0Uc2qh+hOQXLT7kAAIA/AACAP+YHg71cyxC6jkmUOINVDza6Psu6VgGttwAAgD8AAIA/ml2zO1Ly6DwmiiO+ABImvmnhV7yuXTy9AAAAAAAAAACa3QG9XBswumvzeTpgHEs1iX/augI5lLkAAIA/AACAP9r+8L0plhA7+w6UvaC52L3LaNE72+V7vQAAAAAAAAAAADWcvPZcLrruv467pnH5NnJ/qzqqpF+2AACAPwAAgD+zObk9X0yUP+pFfD7amcW+QR/5Pe2OYT0AAAAAAAAAAJodjLzDoXi6cEvSOUBNkDS1iIi7Nbj1uAAAgD8AAIA/mrw/va5ni7okkgI6MGc4tp+qFLuKkha5AACAPwAAgD+a8tG9uMa+uTayDrlm/xuyQauJuwXfKTgAAIA/AAAAAMCQl72knVK7nQF5vCefNDw+k5+8CjkhPQAAgD8AAIA/5lsxvSkYbrrNOqm3czaPsm6KebrbCsI2AACAPwAAgD9mWvg7SMH1uJgEiLxeFVW0P1RoOhYi9TMAAIA/AACAPxM3KL69ZTc8xXS8O9vpCbo3eb69m4DbOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,13 +45,13 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGad8z67/XKMAWyUTegDjAF0lEdAqrO84zabnXV9lChoBkdAZNq+/QBxP2gHTegDaAhHQKq1i6BiCrd1fZQoaAZHQGXS2V3Ux21oB03oA2gIR0Cqu0WYnfEXdX2UKGgGR0BiETt9hJAdaAdN6ANoCEdAqr++m+Cbt3V9lChoBkdAZEHkQPI4l2gHTegDaAhHQKrCVmcOLBN1fZQoaAZHQGR0AX/HYHxoB03oA2gIR0Cqx86Q3gk1dX2UKGgGR0BiKWTRplBhaAdN6ANoCEdAqsgpDVpblnV9lChoBkdAXxutaIN3GGgHTegDaAhHQKrKr+CsfaJ1fZQoaAZHQGIJ2X9itq5oB03oA2gIR0CqzQMIu5BkdX2UKGgGR0Bji8deY2KmaAdN6ANoCEdAqs0ZFG5MDnV9lChoBkdAYH/4MWoFV2gHTegDaAhHQKrN0pcX3xp1fZQoaAZHQGXkP9tMwlBoB03oA2gIR0CqzfE4m1IAdX2UKGgGR0BlWwZwXIluaAdN6ANoCEdAqs4D/lyR0XV9lChoBkdAX1/6+FlCkWgHTegDaAhHQKrOFc6eXiR1fZQoaAZHQGZej3/Pw/hoB03oA2gIR0Cq3KgeA/cGdX2UKGgGR0Bk9F2JSBK+aAdN6ANoCEdAqt7D8P4EfXV9lChoBkdAYuZ37k4m1WgHTegDaAhHQKre0vOhTOx1fZQoaAZHQGCS9JjDsMRoB03oA2gIR0Cq4CoRAbADdX2UKGgGR0Bj+xP69CeFaAdN6ANoCEdAquQN6ol2NnV9lChoBkdAZdVocrAgxWgHTegDaAhHQKrnUMQ2/BZ1fZQoaAZHQGBTkdeY2KloB03oA2gIR0Cq6cEvboKVdX2UKGgGR0BhLFbor4FiaAdN6ANoCEdAqu7v7BO58XV9lChoBkdAXyHV7Qb++GgHTegDaAhHQKrvTtu1ndx1fZQoaAZHQGGGnhKlHjJoB03oA2gIR0Cq8lS9VWCFdX2UKGgGR0Bhbi/CZWq+aAdN6ANoCEdAqvWNM9KVZHV9lChoBkdAYBmbp/wy7GgHTegDaAhHQKr1rECvHLl1fZQoaAZHQGeuP+GXXy1oB03oA2gIR0Cq9rhr30wrdX2UKGgGR0BjeMxM36yjaAdN6ANoCEdAqvbg/C66KHV9lChoBkdAZpTUUfxMFmgHTegDaAhHQKr2/M6ij+J1fZQoaAZHQGHwmelKsdVoB03oA2gIR0Cq9xbBoEjgdX2UKGgGR0BnCSInBtUGaAdN6ANoCEdAqvwqFTNt7HV9lChoBkdAWsIRkEs8PmgHTegDaAhHQKsGYjmjj711fZQoaAZHQGGaSCFsYVJoB03oA2gIR0CrBnJS75EddX2UKGgGR0Bm5sD+zdDZaAdN6ANoCEdAqwf0B0ZFX3V9lChoBkdAZSuBjFyaNWgHTegDaAhHQKsL82kSElF1fZQoaAZHQGc+c+A3DN1oB03oA2gIR0CrDyuPeYUndX2UKGgGR0BiAr0Dlo12aAdN6ANoCEdAqxI6R6nivXV9lChoBkdAbrvx82JizGgHTeACaAhHQKsXF5CWu5l1fZQoaAZHQFy/5nlGPPtoB03oA2gIR0CrGOKOT7l8dX2UKGgGR0BdoVCgK4QSaAdN6ANoCEdAqxlb5TIeYHV9lChoBkdARAqbKA8SwmgHTR8BaAhHQKsaRLZBcA11fZQoaAZHQGMITsQd0aJoB03oA2gIR0CrG9RXfZVXdX2UKGgGR0Bk0EaZQYUGaAdN6ANoCEdAqx3mWUr08XV9lChoBkdAYrsaRZEDyWgHTegDaAhHQKsd+f4AS391fZQoaAZHQGQdK28Zk09oB03oA2gIR0CrHp+xOclPdX2UKGgGR0Bgncy57PY4aAdN6ANoCEdAqx7MMd92HXV9lChoBkdAXB7H0btJF2gHTegDaAhHQKse3WLgn+h1fZQoaAZHQGTWbxEv0yxoB03oA2gIR0CrImIxYaHcdX2UKGgGR0BnXa5VfeDWaAdN6ANoCEdAqyyX9WIXTHV9lChoBkdAZeQCHymQ82gHTegDaAhHQKssp1dPci51fZQoaAZHQGRc4f4h2W9oB03oA2gIR0CrLgdUsFt9dX2UKGgGR0Bj8kyzollcaAdN6ANoCEdAqzNodp7CznV9lChoBkdAYHdAi3XqaGgHTegDaAhHQKs60g4ffXR1fZQoaAZHQGYlN96Tnq5oB03oA2gIR0CrPuyJCSiedX2UKGgGR0BwK664Ds+naAdNBgNoCEdAq0AGfbsWwnV9lChoBkdAYJRD1GsmwGgHTegDaAhHQKtAWU9pyp91fZQoaAZHQGMz+kYXO4ZoB03oA2gIR0CrQK5KODJ2dX2UKGgGR0BjwQDV6NVBaAdN6ANoCEdAq0FllZowmHV9lChoBkdAZEHcnE2pAGgHTegDaAhHQKtC/DkU9IR1fZQoaAZHQGCbZmI0qH5oB03oA2gIR0CrRSMw1zhhdX2UKGgGR0Bk9g0waisXaAdN6ANoCEdAq0U4etCAtnV9lChoBkdAYW7863iJf2gHTegDaAhHQKtGDGPPszF1fZQoaAZHQGR73YL9deJoB03oA2gIR0CrRh+irT6SdX2UKGgGR0BivadnTRYzaAdN6ANoCEdAq0oCTW5H3HV9lChoBkdAY3eAkLQXymgHTegDaAhHQKtXI8jAzpJ1fZQoaAZHQGOm5+pfhMtoB03oA2gIR0CrVzO2RaHLdX2UKGgGR0BkljwDvE0jaAdN6ANoCEdAq1ibYbsF+3V9lChoBkdAcCGgNPP9k2gHTeMBaAhHQKtZD3A2ycF1fZQoaAZHQGdJeTV2A5JoB03oA2gIR0CrW/D9fkWAdX2UKGgGR0Blocm0E5hjaAdN6ANoCEdAq2DA3zcynHV9lChoBkdAZkOoGY8dP2gHTegDaAhHQKtkIaWom5V1fZQoaAZHQGKucGTs6aNoB03oA2gIR0CrZQQdKdxydX2UKGgGR0Bhsl34bjtHaAdN6ANoCEdAq2VOyiVSoHV9lChoBkdAXXireZXuE2gHTegDaAhHQKtlmTakAPx1fZQoaAZHQGQxOYQarFRoB03oA2gIR0CrZ8YuscQzdX2UKGgGR0BiXJbD/EOzaAdN6ANoCEdAq2nqNOuaF3V9lChoBkdAZwy274BV/GgHTegDaAhHQKtp/vAGjbl1fZQoaAZHQGN2IIWxhUloB03oA2gIR0CravMFUyYYdX2UKGgGR0BdqcTJyQxOaAdN6ANoCEdAq2sPjU/fO3V9lChoBkdAZlwon8baRWgHTegDaAhHQKtwo4XGff51fZQoaAZHQGPPZoPCl8BoB03oA2gIR0CrfGwA2hqTdX2UKGgGR0BlfffZVXFMaAdN6ANoCEdAq3x9THbRGHV9lChoBkdAYKQAQxveg2gHTegDaAhHQKt+BEETxoZ1fZQoaAZHQGXjQc5sCT5oB03oA2gIR0Crfok9Mbm2dX2UKGgGR0BuSsxKxs2vaAdNAgJoCEdAq4ElwPy08nV9lChoBkdAY4wml67dzmgHTegDaAhHQKuB4gQHzH11fZQoaAZHQGRAIwM6RyRoB03oA2gIR0Crh3iRfWtmdX2UKGgGR0BwRWDHwPRRaAdNUAFoCEdAq4e3M4cWCXV9lChoBkdAY/ZCNS619mgHTegDaAhHQKuL/VXFLnN1fZQoaAZHQGAQnqNZNfxoB03oA2gIR0CrjVpvP1L8dX2UKGgGR0BkmOu/1xsEaAdN6ANoCEdAq43Fq59Vm3V9lChoBkdAZBcPK+zt1WgHTegDaAhHQKuONgVoHs11fZQoaAZHQHCnjASFoL5oB03PAmgIR0CrkScC5mROdX2UKGgGR0BkfrpmmLtNaAdN6ANoCEdAq5Q7RYzSC3V9lChoBkdAZBCK3NLUTmgHTegDaAhHQKuUTlYEGJN1fZQoaAZHQGSS2/JvHcVoB03oA2gIR0CrlRA0TDfndX2UKGgGR0Bjk7IxQBPsaAdN6ANoCEdAq5UllyzXz3V9lChoBkdAPm7ofSx7iWgHS/5oCEdAq5rLHsC1Z3V9lChoBkdAZyo7FsHjZWgHTegDaAhHQKubA4n4O+Z1fZQoaAZHQGfGZxiobXJoB03oA2gIR0CrmxJx3mmtdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -77,14 +77,14 @@
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
- "n_steps": 1024,
81
  "gamma": 0.999,
82
- "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
- "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b5f607df760>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b5f607df7f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b5f607df880>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b5f607df910>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b5f607df9a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b5f607dfa30>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b5f607dfac0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b5f607dfb50>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b5f607dfbe0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b5f607dfc70>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b5f607dfd00>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b5f607dfd90>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b5f607e0fc0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 2031616,
25
+ "_total_timesteps": 2000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1696787192725924688,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1RNb0iaKk/OQsZvru7+75s6pm9CF3RvQAAAAAAAAAACw2ovphxPD9ud/E9PO8jv5HA6L7meGA+AAAAAAAAAACaUgq9rX24P4jjA77+jnC+y20pvfoJzr0AAAAAAAAAABrnWb7T6Cw/XsD8vZZVOL/xh9q+Yv0YugAAAAAAAAAAzUaovI/qVbqIlnszGmF6Lk1cCDvIWb+zAACAPwAAgD8zJ368n06Vu+YgGT6igIU9UYJJvIVG6jwAAIA/AACAP/1Hlz49RTU/yqJevpZiO790VbY+fQJkvgAAAAAAAAAAAEANO7mLRD5J9pu9g2Mnv/08jbziVZO9AAAAAAAAAAAAkOG8XDsNutJCj7ZALeixc0i0Oqh7pTUAAIA/AACAPxqvr735+0k/gkSlvXiLg7/S9SK++kQovQAAAAAAAAAAZughPDjorbsKLA+6UsGSPGTI/Txb+Xi9AACAPwAAgD8z45S69qQHusJPKTzbQR6yAhgoulL5/LMAAIA/AACAP80Mczu49vq5Mcy5PbKhIzMZY/G52AIqMwAAgD8AAIA/AMwyPalxf7zVIWq+C0hUvchgXTzCG6y+AACAPwAAgD/NFNm88oqXP2BAEb6Lck6/LOyMvFrhk70AAAAAAAAAAI3+Er6keak/3XP0vvG6Ab+/5Ye+YGpbvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGPmPo3aSOMAWyUS62MAXSUR0Ci6pQ7T2FndX2UKGgGR0BzOxgy/KyOaAdLzGgIR0Ci6p384xUOdX2UKGgGR0BxgMqAjIJaaAdLvWgIR0Ci6qlf7aZhdX2UKGgGR0Bxmwr7O3UhaAdLx2gIR0Ci6uyhJyyVdX2UKGgGR0BxIk3cYZVGaAdLnWgIR0Ci6u0z9CNTdX2UKGgGR0BwYqAtnPE9aAdLp2gIR0Ci6ybSJCSidX2UKGgGR0B0Goe3hGYsaAdLsmgIR0Ci6y7wjMV2dX2UKGgGR0BK/1wHZ9NOaAdLY2gIR0Ci60Bt1p0wdX2UKGgGR0Bzf554W1twaAdLvmgIR0Ci60CkoF3ZdX2UKGgGR0BzSqhh6SkkaAdLzmgIR0Ci62rjxTbWdX2UKGgGR0BveTwe/5+IaAdLmmgIR0Ci632Gh24edX2UKGgGR0BBviU5dWyUaAdLdGgIR0Ci65Qt8NQTdX2UKGgGR0By5asNlRP5aAdL0WgIR0Ci65MuvlltdX2UKGgGR0Byx+AFxGUfaAdLw2gIR0Ci66EVFhG6dX2UKGgGR0BvdRaV2Rq5aAdLp2gIR0Ci69mb9ZRsdX2UKGgGR0Bv+fNcGC7LaAdLoGgIR0Ci6+fACW/rdX2UKGgGR0BxuaLyc0+DaAdLwWgIR0Ci6/QsoUi7dX2UKGgGR0By/fBfrrxBaAdLzmgIR0Ci7AtH6MzedX2UKGgGR0B0Ov+kxh2GaAdLuWgIR0Ci7DNz0Yj0dX2UKGgGR0BxAGYUnG83aAdLoWgIR0Ci7Evl+3H8dX2UKGgGR0BxYeqMm4RVaAdLjGgIR0Ci7IEtNBWxdX2UKGgGR0ByE0RaouPFaAdLwGgIR0Ci7LQ8wHqvdX2UKGgGR0BzFq/bj94vaAdLvGgIR0Ci7PxKYiPidX2UKGgGR0BxnMMtsenyaAdLvGgIR0Ci7SDdpItldX2UKGgGR0Bzr3vAoG6gaAdLxGgIR0Ci7SQ2dd3TdX2UKGgGR0Bxoh8D0UXYaAdLomgIR0Ci7V2WQfZFdX2UKGgGR0ByQOhzvJA/aAdL2mgIR0Ci7cqynk1edX2UKGgGR0BzUU+iaiK0aAdLy2gIR0Ci7d7A+IM0dX2UKGgGR0BzC8RqXWvsaAdLy2gIR0Ci7d4tYjjadX2UKGgGR0ByYHMGHHmzaAdL4mgIR0Ci7gNiH6/JdX2UKGgGR0BzXr+vQnhLaAdLs2gIR0Ci7f+E7GNrdX2UKGgGR0ByGkN4JNTMaAdLtGgIR0Ci7ieCK77LdX2UKGgGR0BxwKjO9nK5aAdLq2gIR0Ci7mQID5j6dX2UKGgGR0Bzg64H5aePaAdLxWgIR0Ci7n1OCXhPdX2UKGgGR0ByeqrtE5QxaAdLr2gIR0Ci7or127nQdX2UKGgGR0B0dyLcbiqAaAdL3GgIR0Ci7pEeyRjjdX2UKGgGR0BxZtbaAWi2aAdLomgIR0Ci7pYKYzBRdX2UKGgGR0Bw6aCaqjrSaAdLl2gIR0Ci7t4FRpDedX2UKGgGR0BvsHDUExIraAdLr2gIR0Ci7uNtygf2dX2UKGgGR0A/GU8FINExaAdLWWgIR0Ci7uqODJ2ddX2UKGgGR0BxSLMRpUPyaAdLpWgIR0Ci7ye+/QBxdX2UKGgGR0BwTH9WIXTFaAdLqWgIR0Ci7zcHWz4UdX2UKGgGR0BygL58BuGcaAdLvWgIR0Ci77IgeRxMdX2UKGgGR0BykVS1maphaAdLpmgIR0Ci79wC8vmHdX2UKGgGR0BO9GI9C/oJaAdLemgIR0Ci8ADKxLTQdX2UKGgGR0Bx9nxx1gYxaAdLoGgIR0Ci8BclPacqdX2UKGgGR0BzJPhsImgKaAdLxGgIR0Ci8C4ixFAndX2UKGgGR0BvLZTAFgUlaAdLoGgIR0Ci8FX71qWUdX2UKGgGR0BwQvzFuNxVaAdLmmgIR0Ci8F2iL2pRdX2UKGgGR0BydYQbuMMraAdL0mgIR0Ci8JCHymQ9dX2UKGgGR0BzNWT9sJpnaAdL1mgIR0Ci8KKUeMhpdX2UKGgGR0BINvp6hQFcaAdLe2gIR0Ci8M1hCtzTdX2UKGgGR0B0NoOG0u14aAdLuGgIR0Ci8OOLBKtgdX2UKGgGR0ByAlYJVsDXaAdLoWgIR0Ci8OvZZjhDdX2UKGgGR0BzsYKZ2IO6aAdLz2gIR0Ci8Se2uxKQdX2UKGgGR0ByuTfTCtRvaAdLr2gIR0Ci8ScN6PbPdX2UKGgGR0BylUPuogmraAdLyWgIR0Ci8XeVcD8tdX2UKGgGR0BydqDJ2dNGaAdLxmgIR0Ci8b66J66bdX2UKGgGR0By4BxZMcp9aAdLoWgIR0Ci8dUvPC2udX2UKGgGR0ByHJId2gWaaAdLoGgIR0Ci8lG7rcCYdX2UKGgGR0BxLYkB0ZFYaAdLnmgIR0Ci8n5bILgGdX2UKGgGR0Bv4a/wiJO4aAdLoGgIR0Ci8n6bF0gbdX2UKGgGR0BxXozxgAp8aAdLvmgIR0Ci8o6aCtihdX2UKGgGR0BzmS3d9Dx9aAdLyWgIR0Ci8o3xWkrPdX2UKGgGR0BwB1ltj0+UaAdLqWgIR0Ci8uX8n/kvdX2UKGgGR0BzGcV2zOX3aAdL0mgIR0Ci8uVXeWOZdX2UKGgGR0Bv4mvGIbfhaAdLp2gIR0Ci8yXjU/fPdX2UKGgGR0Bxq80ALiMpaAdLtmgIR0Ci8z/Z/Tb4dX2UKGgGR0Bz+l3np0OmaAdLyGgIR0Ci80HCoCMhdX2UKGgGR0ByveLxZuAJaAdLvGgIR0Ci82dMCcPOdX2UKGgGR0ByyyK4x1xLaAdLrmgIR0Ci833lCCz1dX2UKGgGR0A20MPSUkfLaAdLWWgIR0Ci87kaMrEtdX2UKGgGR0ByL81gpjMFaAdLv2gIR0Ci87dszl90dX2UKGgGR0A/5/H5rP+oaAdLYWgIR0Ci88XeWOZLdX2UKGgGR0BzRh6/qPfbaAdLyWgIR0Ci9CVrZamodX2UKGgGR0Bx6+QDFId3aAdLvmgIR0Ci9EYZ/CqIdX2UKGgGR0BxrCEGqxTsaAdLyGgIR0Ci9IEKeCkHdX2UKGgGR0BxXzAmAskIaAdLo2gIR0Ci9KpEQXhwdX2UKGgGR0By0WyquKXOaAdLwWgIR0Ci9OtsnAqNdX2UKGgGR0ByQBky1uzhaAdLyGgIR0Ci9UVNxlxwdX2UKGgGR0ByNJ+qioKlaAdLpGgIR0Ci9WeIl+mWdX2UKGgGR0BxX++WWyC4aAdLtWgIR0Ci9WIIfKZEdX2UKGgGR0BxS61eBxxUaAdLq2gIR0Ci9ZpqREF4dX2UKGgGR0Byhsnw5NoKaAdLymgIR0Ci9a2Ifr8jdX2UKGgGR0BysNbqyGBXaAdLsWgIR0Ci9dVIqbz9dX2UKGgGR0ByUFNUOuq4aAdLmWgIR0Ci9ePH1e0HdX2UKGgGR0BxVgH3UQTVaAdLq2gIR0Ci9hONHYpVdX2UKGgGR0BwdWsT37DVaAdLsmgIR0Ci9iim2sq8dX2UKGgGR0B0wk14xDb8aAdL1WgIR0Ci9iekgwGodX2UKGgGR0BzY14VymygaAdLx2gIR0Ci9jZmyxA0dX2UKGgGR0By7olruYx+aAdLq2gIR0Ci9qAr6LwXdX2UKGgGR0ByykatLcsUaAdLwmgIR0Ci9sOaWom5dX2UKGgGR0A45Il+mWMTaAdLXWgIR0Ci9sY82aUidX2UKGgGR0Bwk3CAMDwIaAdLmGgIR0Ci9t+pfhMrdX2UKGgGR0ByfNfMOf/WaAdLzWgIR0Ci9xSCWeH0dX2UKGgGR0Byal97WuoxaAdLwWgIR0Ci9xIxpL26dX2UKGgGR0BzKS1og3cYaAdLqGgIR0Ci90HqeK8+dX2UKGgGR0Bvv6GL1mJ4aAdLqmgIR0Ci9009pyp8dX2UKGgGR0BvHOsaKk2xaAdLmmgIR0Ci91VqFh5PdX2UKGgGR0Bxo38xbjcVaAdLvGgIR0Ci91tP557gdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 620,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
+ "n_steps": 2048,
81
  "gamma": 0.999,
82
+ "gae_lambda": 0.95,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 10,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:388c769a0e322fd2667de7f5eed5007eb06a09ea1ca107a38382ce986445a270
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33f61c6c9e6d8f750fd145abb6b1d7b4ff07dfc5c2ecd22ee1e29ba82198c490
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:84f42dc60093ee78889c62e30af016480445f106a3377df87fa507d85c2505c4
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31ac2465ea7b6adc57bb90f05e20e81fecdc3a599c9895923568ac051ab6277f
3
  size 43329
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 239.7429835777062, "std_reward": 25.35671524203393, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-08T12:00:37.629084"}
 
1
+ {"mean_reward": 281.44040322987496, "std_reward": 19.794823396766756, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-08T18:30:40.638163"}