SpartanLondoner commited on
Commit
a72d119
·
1 Parent(s): 9135e91

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 239.74 +/- 25.36
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7df26ba38430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7df26ba384c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7df26ba38550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7df26ba385e0>", "_build": "<function ActorCriticPolicy._build at 0x7df26ba38670>", "forward": "<function ActorCriticPolicy.forward at 0x7df26ba38700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7df26ba38790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7df26ba38820>", "_predict": "<function ActorCriticPolicy._predict at 0x7df26ba388b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7df26ba38940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7df26ba389d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7df26ba38a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7df26ba581c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696764607526596535, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2UET7nVq0/tn4fP0sEtr77GRY+APqXPgAAAAAAAAAAAImsvKVGmT9GZLy8ol2mvt6CIr3qQpW9AAAAAAAAAADGTBC+4WC6ulKmMzrr0Uc2qh+hOQXLT7kAAIA/AACAP+YHg71cyxC6jkmUOINVDza6Psu6VgGttwAAgD8AAIA/ml2zO1Ly6DwmiiO+ABImvmnhV7yuXTy9AAAAAAAAAACa3QG9XBswumvzeTpgHEs1iX/augI5lLkAAIA/AACAP9r+8L0plhA7+w6UvaC52L3LaNE72+V7vQAAAAAAAAAAADWcvPZcLrruv467pnH5NnJ/qzqqpF+2AACAPwAAgD+zObk9X0yUP+pFfD7amcW+QR/5Pe2OYT0AAAAAAAAAAJodjLzDoXi6cEvSOUBNkDS1iIi7Nbj1uAAAgD8AAIA/mrw/va5ni7okkgI6MGc4tp+qFLuKkha5AACAPwAAgD+a8tG9uMa+uTayDrlm/xuyQauJuwXfKTgAAIA/AAAAAMCQl72knVK7nQF5vCefNDw+k5+8CjkhPQAAgD8AAIA/5lsxvSkYbrrNOqm3czaPsm6KebrbCsI2AACAPwAAgD9mWvg7SMH1uJgEiLxeFVW0P1RoOhYi9TMAAIA/AACAPxM3KL69ZTc8xXS8O9vpCbo3eb69m4DbOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGad8z67/XKMAWyUTegDjAF0lEdAqrO84zabnXV9lChoBkdAZNq+/QBxP2gHTegDaAhHQKq1i6BiCrd1fZQoaAZHQGXS2V3Ux21oB03oA2gIR0Cqu0WYnfEXdX2UKGgGR0BiETt9hJAdaAdN6ANoCEdAqr++m+Cbt3V9lChoBkdAZEHkQPI4l2gHTegDaAhHQKrCVmcOLBN1fZQoaAZHQGR0AX/HYHxoB03oA2gIR0Cqx86Q3gk1dX2UKGgGR0BiKWTRplBhaAdN6ANoCEdAqsgpDVpblnV9lChoBkdAXxutaIN3GGgHTegDaAhHQKrKr+CsfaJ1fZQoaAZHQGIJ2X9itq5oB03oA2gIR0CqzQMIu5BkdX2UKGgGR0Bji8deY2KmaAdN6ANoCEdAqs0ZFG5MDnV9lChoBkdAYH/4MWoFV2gHTegDaAhHQKrN0pcX3xp1fZQoaAZHQGXkP9tMwlBoB03oA2gIR0CqzfE4m1IAdX2UKGgGR0BlWwZwXIluaAdN6ANoCEdAqs4D/lyR0XV9lChoBkdAX1/6+FlCkWgHTegDaAhHQKrOFc6eXiR1fZQoaAZHQGZej3/Pw/hoB03oA2gIR0Cq3KgeA/cGdX2UKGgGR0Bk9F2JSBK+aAdN6ANoCEdAqt7D8P4EfXV9lChoBkdAYuZ37k4m1WgHTegDaAhHQKre0vOhTOx1fZQoaAZHQGCS9JjDsMRoB03oA2gIR0Cq4CoRAbADdX2UKGgGR0Bj+xP69CeFaAdN6ANoCEdAquQN6ol2NnV9lChoBkdAZdVocrAgxWgHTegDaAhHQKrnUMQ2/BZ1fZQoaAZHQGBTkdeY2KloB03oA2gIR0Cq6cEvboKVdX2UKGgGR0BhLFbor4FiaAdN6ANoCEdAqu7v7BO58XV9lChoBkdAXyHV7Qb++GgHTegDaAhHQKrvTtu1ndx1fZQoaAZHQGGGnhKlHjJoB03oA2gIR0Cq8lS9VWCFdX2UKGgGR0Bhbi/CZWq+aAdN6ANoCEdAqvWNM9KVZHV9lChoBkdAYBmbp/wy7GgHTegDaAhHQKr1rECvHLl1fZQoaAZHQGeuP+GXXy1oB03oA2gIR0Cq9rhr30wrdX2UKGgGR0BjeMxM36yjaAdN6ANoCEdAqvbg/C66KHV9lChoBkdAZpTUUfxMFmgHTegDaAhHQKr2/M6ij+J1fZQoaAZHQGHwmelKsdVoB03oA2gIR0Cq9xbBoEjgdX2UKGgGR0BnCSInBtUGaAdN6ANoCEdAqvwqFTNt7HV9lChoBkdAWsIRkEs8PmgHTegDaAhHQKsGYjmjj711fZQoaAZHQGGaSCFsYVJoB03oA2gIR0CrBnJS75EddX2UKGgGR0Bm5sD+zdDZaAdN6ANoCEdAqwf0B0ZFX3V9lChoBkdAZSuBjFyaNWgHTegDaAhHQKsL82kSElF1fZQoaAZHQGc+c+A3DN1oB03oA2gIR0CrDyuPeYUndX2UKGgGR0BiAr0Dlo12aAdN6ANoCEdAqxI6R6nivXV9lChoBkdAbrvx82JizGgHTeACaAhHQKsXF5CWu5l1fZQoaAZHQFy/5nlGPPtoB03oA2gIR0CrGOKOT7l8dX2UKGgGR0BdoVCgK4QSaAdN6ANoCEdAqxlb5TIeYHV9lChoBkdARAqbKA8SwmgHTR8BaAhHQKsaRLZBcA11fZQoaAZHQGMITsQd0aJoB03oA2gIR0CrG9RXfZVXdX2UKGgGR0Bk0EaZQYUGaAdN6ANoCEdAqx3mWUr08XV9lChoBkdAYrsaRZEDyWgHTegDaAhHQKsd+f4AS391fZQoaAZHQGQdK28Zk09oB03oA2gIR0CrHp+xOclPdX2UKGgGR0Bgncy57PY4aAdN6ANoCEdAqx7MMd92HXV9lChoBkdAXB7H0btJF2gHTegDaAhHQKse3WLgn+h1fZQoaAZHQGTWbxEv0yxoB03oA2gIR0CrImIxYaHcdX2UKGgGR0BnXa5VfeDWaAdN6ANoCEdAqyyX9WIXTHV9lChoBkdAZeQCHymQ82gHTegDaAhHQKssp1dPci51fZQoaAZHQGRc4f4h2W9oB03oA2gIR0CrLgdUsFt9dX2UKGgGR0Bj8kyzollcaAdN6ANoCEdAqzNodp7CznV9lChoBkdAYHdAi3XqaGgHTegDaAhHQKs60g4ffXR1fZQoaAZHQGYlN96Tnq5oB03oA2gIR0CrPuyJCSiedX2UKGgGR0BwK664Ds+naAdNBgNoCEdAq0AGfbsWwnV9lChoBkdAYJRD1GsmwGgHTegDaAhHQKtAWU9pyp91fZQoaAZHQGMz+kYXO4ZoB03oA2gIR0CrQK5KODJ2dX2UKGgGR0BjwQDV6NVBaAdN6ANoCEdAq0FllZowmHV9lChoBkdAZEHcnE2pAGgHTegDaAhHQKtC/DkU9IR1fZQoaAZHQGCbZmI0qH5oB03oA2gIR0CrRSMw1zhhdX2UKGgGR0Bk9g0waisXaAdN6ANoCEdAq0U4etCAtnV9lChoBkdAYW7863iJf2gHTegDaAhHQKtGDGPPszF1fZQoaAZHQGR73YL9deJoB03oA2gIR0CrRh+irT6SdX2UKGgGR0BivadnTRYzaAdN6ANoCEdAq0oCTW5H3HV9lChoBkdAY3eAkLQXymgHTegDaAhHQKtXI8jAzpJ1fZQoaAZHQGOm5+pfhMtoB03oA2gIR0CrVzO2RaHLdX2UKGgGR0BkljwDvE0jaAdN6ANoCEdAq1ibYbsF+3V9lChoBkdAcCGgNPP9k2gHTeMBaAhHQKtZD3A2ycF1fZQoaAZHQGdJeTV2A5JoB03oA2gIR0CrW/D9fkWAdX2UKGgGR0Blocm0E5hjaAdN6ANoCEdAq2DA3zcynHV9lChoBkdAZkOoGY8dP2gHTegDaAhHQKtkIaWom5V1fZQoaAZHQGKucGTs6aNoB03oA2gIR0CrZQQdKdxydX2UKGgGR0Bhsl34bjtHaAdN6ANoCEdAq2VOyiVSoHV9lChoBkdAXXireZXuE2gHTegDaAhHQKtlmTakAPx1fZQoaAZHQGQxOYQarFRoB03oA2gIR0CrZ8YuscQzdX2UKGgGR0BiXJbD/EOzaAdN6ANoCEdAq2nqNOuaF3V9lChoBkdAZwy274BV/GgHTegDaAhHQKtp/vAGjbl1fZQoaAZHQGN2IIWxhUloB03oA2gIR0CravMFUyYYdX2UKGgGR0BdqcTJyQxOaAdN6ANoCEdAq2sPjU/fO3V9lChoBkdAZlwon8baRWgHTegDaAhHQKtwo4XGff51fZQoaAZHQGPPZoPCl8BoB03oA2gIR0CrfGwA2hqTdX2UKGgGR0BlfffZVXFMaAdN6ANoCEdAq3x9THbRGHV9lChoBkdAYKQAQxveg2gHTegDaAhHQKt+BEETxoZ1fZQoaAZHQGXjQc5sCT5oB03oA2gIR0Crfok9Mbm2dX2UKGgGR0BuSsxKxs2vaAdNAgJoCEdAq4ElwPy08nV9lChoBkdAY4wml67dzmgHTegDaAhHQKuB4gQHzH11fZQoaAZHQGRAIwM6RyRoB03oA2gIR0Crh3iRfWtmdX2UKGgGR0BwRWDHwPRRaAdNUAFoCEdAq4e3M4cWCXV9lChoBkdAY/ZCNS619mgHTegDaAhHQKuL/VXFLnN1fZQoaAZHQGAQnqNZNfxoB03oA2gIR0CrjVpvP1L8dX2UKGgGR0BkmOu/1xsEaAdN6ANoCEdAq43Fq59Vm3V9lChoBkdAZBcPK+zt1WgHTegDaAhHQKuONgVoHs11fZQoaAZHQHCnjASFoL5oB03PAmgIR0CrkScC5mROdX2UKGgGR0BkfrpmmLtNaAdN6ANoCEdAq5Q7RYzSC3V9lChoBkdAZBCK3NLUTmgHTegDaAhHQKuUTlYEGJN1fZQoaAZHQGSS2/JvHcVoB03oA2gIR0CrlRA0TDfndX2UKGgGR0Bjk7IxQBPsaAdN6ANoCEdAq5UllyzXz3V9lChoBkdAPm7ofSx7iWgHS/5oCEdAq5rLHsC1Z3V9lChoBkdAZyo7FsHjZWgHTegDaAhHQKubA4n4O+Z1fZQoaAZHQGfGZxiobXJoB03oA2gIR0CrmxJx3mmtdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:112b52888eb9ae749f54482ec5e64c52d66707a533e732ac3f25295ed06391fe
3
+ size 146755
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7df26ba38430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7df26ba384c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7df26ba38550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7df26ba385e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7df26ba38670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7df26ba38700>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7df26ba38790>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7df26ba38820>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7df26ba388b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7df26ba38940>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7df26ba389d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7df26ba38a60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7df26ba581c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1696764607526596535,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2UET7nVq0/tn4fP0sEtr77GRY+APqXPgAAAAAAAAAAAImsvKVGmT9GZLy8ol2mvt6CIr3qQpW9AAAAAAAAAADGTBC+4WC6ulKmMzrr0Uc2qh+hOQXLT7kAAIA/AACAP+YHg71cyxC6jkmUOINVDza6Psu6VgGttwAAgD8AAIA/ml2zO1Ly6DwmiiO+ABImvmnhV7yuXTy9AAAAAAAAAACa3QG9XBswumvzeTpgHEs1iX/augI5lLkAAIA/AACAP9r+8L0plhA7+w6UvaC52L3LaNE72+V7vQAAAAAAAAAAADWcvPZcLrruv467pnH5NnJ/qzqqpF+2AACAPwAAgD+zObk9X0yUP+pFfD7amcW+QR/5Pe2OYT0AAAAAAAAAAJodjLzDoXi6cEvSOUBNkDS1iIi7Nbj1uAAAgD8AAIA/mrw/va5ni7okkgI6MGc4tp+qFLuKkha5AACAPwAAgD+a8tG9uMa+uTayDrlm/xuyQauJuwXfKTgAAIA/AAAAAMCQl72knVK7nQF5vCefNDw+k5+8CjkhPQAAgD8AAIA/5lsxvSkYbrrNOqm3czaPsm6KebrbCsI2AACAPwAAgD9mWvg7SMH1uJgEiLxeFVW0P1RoOhYi9TMAAIA/AACAPxM3KL69ZTc8xXS8O9vpCbo3eb69m4DbOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGad8z67/XKMAWyUTegDjAF0lEdAqrO84zabnXV9lChoBkdAZNq+/QBxP2gHTegDaAhHQKq1i6BiCrd1fZQoaAZHQGXS2V3Ux21oB03oA2gIR0Cqu0WYnfEXdX2UKGgGR0BiETt9hJAdaAdN6ANoCEdAqr++m+Cbt3V9lChoBkdAZEHkQPI4l2gHTegDaAhHQKrCVmcOLBN1fZQoaAZHQGR0AX/HYHxoB03oA2gIR0Cqx86Q3gk1dX2UKGgGR0BiKWTRplBhaAdN6ANoCEdAqsgpDVpblnV9lChoBkdAXxutaIN3GGgHTegDaAhHQKrKr+CsfaJ1fZQoaAZHQGIJ2X9itq5oB03oA2gIR0CqzQMIu5BkdX2UKGgGR0Bji8deY2KmaAdN6ANoCEdAqs0ZFG5MDnV9lChoBkdAYH/4MWoFV2gHTegDaAhHQKrN0pcX3xp1fZQoaAZHQGXkP9tMwlBoB03oA2gIR0CqzfE4m1IAdX2UKGgGR0BlWwZwXIluaAdN6ANoCEdAqs4D/lyR0XV9lChoBkdAX1/6+FlCkWgHTegDaAhHQKrOFc6eXiR1fZQoaAZHQGZej3/Pw/hoB03oA2gIR0Cq3KgeA/cGdX2UKGgGR0Bk9F2JSBK+aAdN6ANoCEdAqt7D8P4EfXV9lChoBkdAYuZ37k4m1WgHTegDaAhHQKre0vOhTOx1fZQoaAZHQGCS9JjDsMRoB03oA2gIR0Cq4CoRAbADdX2UKGgGR0Bj+xP69CeFaAdN6ANoCEdAquQN6ol2NnV9lChoBkdAZdVocrAgxWgHTegDaAhHQKrnUMQ2/BZ1fZQoaAZHQGBTkdeY2KloB03oA2gIR0Cq6cEvboKVdX2UKGgGR0BhLFbor4FiaAdN6ANoCEdAqu7v7BO58XV9lChoBkdAXyHV7Qb++GgHTegDaAhHQKrvTtu1ndx1fZQoaAZHQGGGnhKlHjJoB03oA2gIR0Cq8lS9VWCFdX2UKGgGR0Bhbi/CZWq+aAdN6ANoCEdAqvWNM9KVZHV9lChoBkdAYBmbp/wy7GgHTegDaAhHQKr1rECvHLl1fZQoaAZHQGeuP+GXXy1oB03oA2gIR0Cq9rhr30wrdX2UKGgGR0BjeMxM36yjaAdN6ANoCEdAqvbg/C66KHV9lChoBkdAZpTUUfxMFmgHTegDaAhHQKr2/M6ij+J1fZQoaAZHQGHwmelKsdVoB03oA2gIR0Cq9xbBoEjgdX2UKGgGR0BnCSInBtUGaAdN6ANoCEdAqvwqFTNt7HV9lChoBkdAWsIRkEs8PmgHTegDaAhHQKsGYjmjj711fZQoaAZHQGGaSCFsYVJoB03oA2gIR0CrBnJS75EddX2UKGgGR0Bm5sD+zdDZaAdN6ANoCEdAqwf0B0ZFX3V9lChoBkdAZSuBjFyaNWgHTegDaAhHQKsL82kSElF1fZQoaAZHQGc+c+A3DN1oB03oA2gIR0CrDyuPeYUndX2UKGgGR0BiAr0Dlo12aAdN6ANoCEdAqxI6R6nivXV9lChoBkdAbrvx82JizGgHTeACaAhHQKsXF5CWu5l1fZQoaAZHQFy/5nlGPPtoB03oA2gIR0CrGOKOT7l8dX2UKGgGR0BdoVCgK4QSaAdN6ANoCEdAqxlb5TIeYHV9lChoBkdARAqbKA8SwmgHTR8BaAhHQKsaRLZBcA11fZQoaAZHQGMITsQd0aJoB03oA2gIR0CrG9RXfZVXdX2UKGgGR0Bk0EaZQYUGaAdN6ANoCEdAqx3mWUr08XV9lChoBkdAYrsaRZEDyWgHTegDaAhHQKsd+f4AS391fZQoaAZHQGQdK28Zk09oB03oA2gIR0CrHp+xOclPdX2UKGgGR0Bgncy57PY4aAdN6ANoCEdAqx7MMd92HXV9lChoBkdAXB7H0btJF2gHTegDaAhHQKse3WLgn+h1fZQoaAZHQGTWbxEv0yxoB03oA2gIR0CrImIxYaHcdX2UKGgGR0BnXa5VfeDWaAdN6ANoCEdAqyyX9WIXTHV9lChoBkdAZeQCHymQ82gHTegDaAhHQKssp1dPci51fZQoaAZHQGRc4f4h2W9oB03oA2gIR0CrLgdUsFt9dX2UKGgGR0Bj8kyzollcaAdN6ANoCEdAqzNodp7CznV9lChoBkdAYHdAi3XqaGgHTegDaAhHQKs60g4ffXR1fZQoaAZHQGYlN96Tnq5oB03oA2gIR0CrPuyJCSiedX2UKGgGR0BwK664Ds+naAdNBgNoCEdAq0AGfbsWwnV9lChoBkdAYJRD1GsmwGgHTegDaAhHQKtAWU9pyp91fZQoaAZHQGMz+kYXO4ZoB03oA2gIR0CrQK5KODJ2dX2UKGgGR0BjwQDV6NVBaAdN6ANoCEdAq0FllZowmHV9lChoBkdAZEHcnE2pAGgHTegDaAhHQKtC/DkU9IR1fZQoaAZHQGCbZmI0qH5oB03oA2gIR0CrRSMw1zhhdX2UKGgGR0Bk9g0waisXaAdN6ANoCEdAq0U4etCAtnV9lChoBkdAYW7863iJf2gHTegDaAhHQKtGDGPPszF1fZQoaAZHQGR73YL9deJoB03oA2gIR0CrRh+irT6SdX2UKGgGR0BivadnTRYzaAdN6ANoCEdAq0oCTW5H3HV9lChoBkdAY3eAkLQXymgHTegDaAhHQKtXI8jAzpJ1fZQoaAZHQGOm5+pfhMtoB03oA2gIR0CrVzO2RaHLdX2UKGgGR0BkljwDvE0jaAdN6ANoCEdAq1ibYbsF+3V9lChoBkdAcCGgNPP9k2gHTeMBaAhHQKtZD3A2ycF1fZQoaAZHQGdJeTV2A5JoB03oA2gIR0CrW/D9fkWAdX2UKGgGR0Blocm0E5hjaAdN6ANoCEdAq2DA3zcynHV9lChoBkdAZkOoGY8dP2gHTegDaAhHQKtkIaWom5V1fZQoaAZHQGKucGTs6aNoB03oA2gIR0CrZQQdKdxydX2UKGgGR0Bhsl34bjtHaAdN6ANoCEdAq2VOyiVSoHV9lChoBkdAXXireZXuE2gHTegDaAhHQKtlmTakAPx1fZQoaAZHQGQxOYQarFRoB03oA2gIR0CrZ8YuscQzdX2UKGgGR0BiXJbD/EOzaAdN6ANoCEdAq2nqNOuaF3V9lChoBkdAZwy274BV/GgHTegDaAhHQKtp/vAGjbl1fZQoaAZHQGN2IIWxhUloB03oA2gIR0CravMFUyYYdX2UKGgGR0BdqcTJyQxOaAdN6ANoCEdAq2sPjU/fO3V9lChoBkdAZlwon8baRWgHTegDaAhHQKtwo4XGff51fZQoaAZHQGPPZoPCl8BoB03oA2gIR0CrfGwA2hqTdX2UKGgGR0BlfffZVXFMaAdN6ANoCEdAq3x9THbRGHV9lChoBkdAYKQAQxveg2gHTegDaAhHQKt+BEETxoZ1fZQoaAZHQGXjQc5sCT5oB03oA2gIR0Crfok9Mbm2dX2UKGgGR0BuSsxKxs2vaAdNAgJoCEdAq4ElwPy08nV9lChoBkdAY4wml67dzmgHTegDaAhHQKuB4gQHzH11fZQoaAZHQGRAIwM6RyRoB03oA2gIR0Crh3iRfWtmdX2UKGgGR0BwRWDHwPRRaAdNUAFoCEdAq4e3M4cWCXV9lChoBkdAY/ZCNS619mgHTegDaAhHQKuL/VXFLnN1fZQoaAZHQGAQnqNZNfxoB03oA2gIR0CrjVpvP1L8dX2UKGgGR0BkmOu/1xsEaAdN6ANoCEdAq43Fq59Vm3V9lChoBkdAZBcPK+zt1WgHTegDaAhHQKuONgVoHs11fZQoaAZHQHCnjASFoL5oB03PAmgIR0CrkScC5mROdX2UKGgGR0BkfrpmmLtNaAdN6ANoCEdAq5Q7RYzSC3V9lChoBkdAZBCK3NLUTmgHTegDaAhHQKuUTlYEGJN1fZQoaAZHQGSS2/JvHcVoB03oA2gIR0CrlRA0TDfndX2UKGgGR0Bjk7IxQBPsaAdN6ANoCEdAq5UllyzXz3V9lChoBkdAPm7ofSx7iWgHS/5oCEdAq5rLHsC1Z3V9lChoBkdAZyo7FsHjZWgHTegDaAhHQKubA4n4O+Z1fZQoaAZHQGfGZxiobXJoB03oA2gIR0CrmxJx3mmtdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:388c769a0e322fd2667de7f5eed5007eb06a09ea1ca107a38382ce986445a270
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84f42dc60093ee78889c62e30af016480445f106a3377df87fa507d85c2505c4
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (130 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 239.7429835777062, "std_reward": 25.35671524203393, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-08T12:00:37.629084"}