lunar_lander_ppo / config.json
SouravP11's picture
Upload PPO LunarLander-v2 trained agent
126a8dc verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7855bdaf8e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7855bdaf8ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7855bdaf8f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7855bdaf9000>", "_build": "<function ActorCriticPolicy._build at 0x7855bdaf9090>", "forward": "<function ActorCriticPolicy.forward at 0x7855bdaf9120>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7855bdaf91b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7855bdaf9240>", "_predict": "<function ActorCriticPolicy._predict at 0x7855bdaf92d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7855bdaf9360>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7855bdaf93f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7855bdaf9480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7855bdc8f500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717874258873135472, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1YWD2XTFk/VA+EPlr4H78dH16+bhCIPQAAAAAAAAAANiNNvpG9hT7GffK9NZYKvy/aBL2jqgo9AAAAAAAAAABmeGw8YZWzPzow/T7JZ+S9dgiBvNi5xb0AAAAAAAAAAACANrtYrKg/APztvNsq8b5hyA++TfAWPgAAAAAAAAAAzf+jvAEusz9ye/++nA8avoronzzOT4A9AAAAAAAAAAAmoba+x9IbP9LGDb0BDEy/Ssz3vuXXAT4AAAAAAAAAANCAp770q5Y/SpcBvzKCnL60YKa+6GrfvQAAAAAAAAAAUAAtP33gZT7A9rw+L0lFvxmMBb7A9N88AAAAAAAAAADmoh49ybOSP+7WG7tgVPS+9O1EPsMt4j0AAAAAAAAAAH4k+L6i4Uc/yQ2AvqTiLr/9Pea++TMsvgAAAAAAAAAAc3+6vVTdhD4tTgs+rXEav/RUPr4iPI28AAAAAAAAAAAA1ku9ASCtP0/6Kb2kIUS+4eLQvKsRwb0AAAAAAAAAAJrraj7frYw/Lq4eP8p6Bb9bRog9dEOOPgAAAAAAAAAAfS4PPyLYIL6wtPk+pFifvol7gbs12E+/AAAAAAAAAACtK82+QnUjPn6bJ77Jzjq/9D8WviY0xLwAAAAAAAAAAGASib6geUQ/2AiCPg5jPr+EGSC/bwQgPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCx+ryUcGTuMAWyUS2WMAXSUR0BzuqapgkTpdX2UKGgGR8BSjRqCYkVvaAdLUmgIR0Bzu6Ts6aLGdX2UKGgGR8A59h6Skj5caAdLZmgIR0Bzu9Tzd1uBdX2UKGgGR8A9tJOWSlnAaAdLbGgIR0Bzu/ustCiRdX2UKGgGR8BTOOVLSNOuaAdLe2gIR0BzvSaqjrRjdX2UKGgGR8ArFk1dgOSXaAdLj2gIR0Bzvc+A3DNydX2UKGgGR8BRksQ/X5FgaAdLl2gIR0Bzvi33Hq/udX2UKGgGR8BRblZs9B8haAdLg2gIR0BzvlqBVdX1dX2UKGgGR8BF4WVeKKpDaAdLrGgIR0Bzv8Jmdy1edX2UKGgGR8BXfdyYG+sYaAdLkWgIR0BzwFX1anrIdX2UKGgGR8BTMCb+cYqHaAdLx2gIR0BzwHNLUTcqdX2UKGgGR8A5DJZntfG/aAdLj2gIR0BzwPxjJ+2FdX2UKGgGR8A1nZDzAeq8aAdLjmgIR0BzwRK6FuejdX2UKGgGR8BMiBo/RmbtaAdLeGgIR0BzweoP07KadX2UKGgGR8A4nac7QswtaAdLemgIR0Bzw1dqtYCAdX2UKGgGR8BGOhnrY5DJaAdLVWgIR0Bzw9YHPeHjdX2UKGgGR8BI1uNxVAAyaAdLqWgIR0Bzw9pItlI3dX2UKGgGR8AzFFoL5RCQaAdLemgIR0BzxFkK/mDEdX2UKGgGR8BNsnw5NoJzaAdLXWgIR0BzxOo3rD64dX2UKGgGR8BAKlBIFvAHaAdLjWgIR0BzxdcmjTKDdX2UKGgGR8BLDNrj5sTGaAdLsmgIR0Bzxfddmg8KdX2UKGgGR0ABzjFQ2uPnaAdLbWgIR0BzyC7iADq4dX2UKGgGR8AwTtix3V0+aAdLrmgIR0BzyJkDp1RtdX2UKGgGR8BKGrEk0JnhaAdLYWgIR0BzyRgfEGaAdX2UKGgGR8BM06UJOWSmaAdLomgIR0BzyQlpoK2KdX2UKGgGR8BM1bIcR15jaAdLgWgIR0BzydAv+OwQdX2UKGgGR8BLcOgpSaVlaAdLfGgIR0Bzyice8wpOdX2UKGgGR8BFBSIpH7P6aAdLfWgIR0BzynOmixmkdX2UKGgGR8BLs9/jKgZkaAdLp2gIR0BzyqkcjqwAdX2UKGgGR8A0pyMDOkckaAdLj2gIR0BzyoIrvsqsdX2UKGgGR8A9xG+K0lZ6aAdLgGgIR0BzzT/MnqmkdX2UKGgGR8BFId0zTF2naAdLY2gIR0BzzbEETxoadX2UKGgGR8BRpyMkyDZlaAdLf2gIR0Bzzak690zTdX2UKGgGR8BFsIzFdcB2aAdLgmgIR0BzzlhmXgLrdX2UKGgGR8AoDlxOtW+5aAdLlWgIR0BzzyXUpd8idX2UKGgGR8Axz/20zCUHaAdLhmgIR0Bz0D8EV32VdX2UKGgGR8BK11ivxH5KaAdLamgIR0Bz0F8neBQOdX2UKGgGR8BC+UCzTnaGaAdLomgIR0Bz0Tp/wy6+dX2UKGgGR0BD/0kOZssQaAdLe2gIR0Bz00vYe1a4dX2UKGgGR8AnmrI5o4+9aAdLeWgIR0Bz01VghKUWdX2UKGgGR8BhXQdn003waAdLkWgIR0Bz0/cXWOIZdX2UKGgGR0AxhHPu5SWJaAdLZWgIR0Bz1JAood+5dX2UKGgGR8A/kQPZqVQiaAdLn2gIR0Bz1JruYx+KdX2UKGgGR0A+07l7tzCDaAdLnGgIR0Bz1LYRNATqdX2UKGgGR8BP8Dj7yhBaaAdLjGgIR0Bz1L3N9ph4dX2UKGgGR8BBhHPNVzZIaAdLkWgIR0Bz1T7MxGlRdX2UKGgGR8AyspQ1rIo3aAdLZWgIR0Bz1aD8LroodX2UKGgGR0Al4udwvQF+aAdLjWgIR0Bz17hOxjaxdX2UKGgGR8BECQS8J2MbaAdLn2gIR0Bz2ULlV94NdX2UKGgGR8A2NAZKnNxEaAdLgGgIR0Bz2dGtp22YdX2UKGgGR8Br8Ax+KCQLaAdL22gIR0Bz2iDbrTpgdX2UKGgGR0AhRQUpNKywaAdLmWgIR0Bz2ng62fCidX2UKGgGR8A+1rC3w1BMaAdLZWgIR0Bz2shUzbeudX2UKGgGR8BCPlCb+cYqaAdLZWgIR0Bz3AWykbgkdX2UKGgGR8BGKiSRr8BNaAdLYWgIR0Bz3H3j+717dX2UKGgGR8BMXMNtqHoHaAdLd2gIR0Bz3MqJ/G2kdX2UKGgGR8BEQ1/2Cdz5aAdLgWgIR0Bz3OKrJbMYdX2UKGgGR8BQV6xC6YmcaAdLrmgIR0Bz3SmvW6K+dX2UKGgGR8BOAuvECNjtaAdLpWgIR0Bz3XZh8YygdX2UKGgGR8ASXy08eS0TaAdLhGgIR0Bz3j1dxAB1dX2UKGgGR0A2hI4EOiFkaAdLjmgIR0Bz3xBIFvAHdX2UKGgGR8BGn/bsWweOaAdLjWgIR0Bz3/PnjhkzdX2UKGgGR0BCkvfbblBAaAdLn2gIR0Bz4Dz5GjKxdX2UKGgGR8AntC5VfeDWaAdLY2gIR0Bz4GcFyJbddX2UKGgGR8BEZ0ZeiSJTaAdLemgIR0Bz4LQhOgxrdX2UKGgGR8AAn/R3NcGDaAdLe2gIR0Bz5qG47Rv4dX2UKGgGR8AzTAeaKDTSaAdLgWgIR0Bz577DVH4HdX2UKGgGR8A/fHUtqYZ3aAdLiWgIR0Bz6AIJJGvwdX2UKGgGR8BASAXuVopQaAdLkWgIR0Bz6AEjgQ6IdX2UKGgGR8At92A5Jbt7aAdLdmgIR0Bz6Jf7aZhKdX2UKGgGR8BBMkB0ZFXraAdLfWgIR0Bz6LCzkZJkdX2UKGgGR8BDHgzguRLcaAdLXmgIR0Bz6Le7+T/ydX2UKGgGR8ArFY6GQCCBaAdLd2gIR0Bz6WfAbhm5dX2UKGgGR8BNpbqyGBWgaAdLgmgIR0Bz6dG7SRbKdX2UKGgGR8BLqFUZNwiraAdLYWgIR0Bz6dkAggX/dX2UKGgGR8BZ2PKlpGnXaAdLVmgIR0Bz6qw0O3DvdX2UKGgGR8BG+MPBi1AraAdLZGgIR0Bz61z4k/r0dX2UKGgGR8BBoZ8rqdH2aAdLl2gIR0Bz6+VKPGQ0dX2UKGgGR0AkRMfRu0kXaAdLdmgIR0Bz7HV6NVBEdX2UKGgGR8BWXaXnhbW3aAdLU2gIR0Bz7JtEXtSidX2UKGgGR8BWRffj0cwQaAdLrGgIR0Bz7NFmWdEtdX2UKGgGR8AglEsrd30PaAdLmWgIR0Bz7oVnEl3RdX2UKGgGR8BM/FLnLaEjaAdLWGgIR0Bz7tHlOoHcdX2UKGgGR8BPHRLkCFK1aAdLR2gIR0Bz7rNPgvUSdX2UKGgGR8Aq0ypJf6XTaAdLdWgIR0Bz8NZ9uxbCdX2UKGgGR8BIu7212JSBaAdLf2gIR0Bz8MBZIQOGdX2UKGgGR8Ay9M1jy4FzaAdLgmgIR0Bz8ooUi6g/dX2UKGgGR7/vAmZ3LV4HaAdLg2gIR0Bz8wvZh8YydX2UKGgGR8BTWw+Y+jdpaAdLXmgIR0Bz8yHFglWwdX2UKGgGR8AXIrOJLuhLaAdLamgIR0Bz83SPU8V6dX2UKGgGR8BDEzH0btJGaAdLn2gIR0Bz811MdtEYdX2UKGgGR8A3/4CIUJv6aAdLoWgIR0Bz84An2IwedX2UKGgGR8A6dCGN70FsaAdLfWgIR0Bz85Xo1UEQdX2UKGgGR8A297PY4ACGaAdLV2gIR0Bz9MOQQtjDdX2UKGgGR8A3uPOY6XByaAdLY2gIR0Bz9eZE2HcldX2UKGgGR8AlzX7tRekYaAdLu2gIR0Bz9fCqIacadX2UKGgGR8A74Sl3yI56aAdLoWgIR0Bz9rTc6/7BdX2UKGgGR8BHEjcmBvrGaAdLWWgIR0Bz9wz0pVjqdX2UKGgGR8AgYKNyYG+saAdLsmgIR0Bz+XEETxoadX2UKGgGR8BB3JCrtE5RaAdLemgIR0Bz+ZQrMC9zdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 33, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}