Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2_total_timesteps.zip +3 -0
- ppo-LunarLander-v2_total_timesteps/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2_total_timesteps/data +99 -0
- ppo-LunarLander-v2_total_timesteps/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2_total_timesteps/policy.pth +3 -0
- ppo-LunarLander-v2_total_timesteps/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2_total_timesteps/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -259.11 +/- 47.70
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7855bdaf8e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7855bdaf8ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7855bdaf8f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7855bdaf9000>", "_build": "<function ActorCriticPolicy._build at 0x7855bdaf9090>", "forward": "<function ActorCriticPolicy.forward at 0x7855bdaf9120>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7855bdaf91b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7855bdaf9240>", "_predict": "<function ActorCriticPolicy._predict at 0x7855bdaf92d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7855bdaf9360>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7855bdaf93f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7855bdaf9480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7855bdc8f500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717874258873135472, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1YWD2XTFk/VA+EPlr4H78dH16+bhCIPQAAAAAAAAAANiNNvpG9hT7GffK9NZYKvy/aBL2jqgo9AAAAAAAAAABmeGw8YZWzPzow/T7JZ+S9dgiBvNi5xb0AAAAAAAAAAACANrtYrKg/APztvNsq8b5hyA++TfAWPgAAAAAAAAAAzf+jvAEusz9ye/++nA8avoronzzOT4A9AAAAAAAAAAAmoba+x9IbP9LGDb0BDEy/Ssz3vuXXAT4AAAAAAAAAANCAp770q5Y/SpcBvzKCnL60YKa+6GrfvQAAAAAAAAAAUAAtP33gZT7A9rw+L0lFvxmMBb7A9N88AAAAAAAAAADmoh49ybOSP+7WG7tgVPS+9O1EPsMt4j0AAAAAAAAAAH4k+L6i4Uc/yQ2AvqTiLr/9Pea++TMsvgAAAAAAAAAAc3+6vVTdhD4tTgs+rXEav/RUPr4iPI28AAAAAAAAAAAA1ku9ASCtP0/6Kb2kIUS+4eLQvKsRwb0AAAAAAAAAAJrraj7frYw/Lq4eP8p6Bb9bRog9dEOOPgAAAAAAAAAAfS4PPyLYIL6wtPk+pFifvol7gbs12E+/AAAAAAAAAACtK82+QnUjPn6bJ77Jzjq/9D8WviY0xLwAAAAAAAAAAGASib6geUQ/2AiCPg5jPr+EGSC/bwQgPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCx+ryUcGTuMAWyUS2WMAXSUR0BzuqapgkTpdX2UKGgGR8BSjRqCYkVvaAdLUmgIR0Bzu6Ts6aLGdX2UKGgGR8A59h6Skj5caAdLZmgIR0Bzu9Tzd1uBdX2UKGgGR8A9tJOWSlnAaAdLbGgIR0Bzu/ustCiRdX2UKGgGR8BTOOVLSNOuaAdLe2gIR0BzvSaqjrRjdX2UKGgGR8ArFk1dgOSXaAdLj2gIR0Bzvc+A3DNydX2UKGgGR8BRksQ/X5FgaAdLl2gIR0Bzvi33Hq/udX2UKGgGR8BRblZs9B8haAdLg2gIR0BzvlqBVdX1dX2UKGgGR8BF4WVeKKpDaAdLrGgIR0Bzv8Jmdy1edX2UKGgGR8BXfdyYG+sYaAdLkWgIR0BzwFX1anrIdX2UKGgGR8BTMCb+cYqHaAdLx2gIR0BzwHNLUTcqdX2UKGgGR8A5DJZntfG/aAdLj2gIR0BzwPxjJ+2FdX2UKGgGR8A1nZDzAeq8aAdLjmgIR0BzwRK6FuejdX2UKGgGR8BMiBo/RmbtaAdLeGgIR0BzweoP07KadX2UKGgGR8A4nac7QswtaAdLemgIR0Bzw1dqtYCAdX2UKGgGR8BGOhnrY5DJaAdLVWgIR0Bzw9YHPeHjdX2UKGgGR8BI1uNxVAAyaAdLqWgIR0Bzw9pItlI3dX2UKGgGR8AzFFoL5RCQaAdLemgIR0BzxFkK/mDEdX2UKGgGR8BNsnw5NoJzaAdLXWgIR0BzxOo3rD64dX2UKGgGR8BAKlBIFvAHaAdLjWgIR0BzxdcmjTKDdX2UKGgGR8BLDNrj5sTGaAdLsmgIR0Bzxfddmg8KdX2UKGgGR0ABzjFQ2uPnaAdLbWgIR0BzyC7iADq4dX2UKGgGR8AwTtix3V0+aAdLrmgIR0BzyJkDp1RtdX2UKGgGR8BKGrEk0JnhaAdLYWgIR0BzyRgfEGaAdX2UKGgGR8BM06UJOWSmaAdLomgIR0BzyQlpoK2KdX2UKGgGR8BM1bIcR15jaAdLgWgIR0BzydAv+OwQdX2UKGgGR8BLcOgpSaVlaAdLfGgIR0Bzyice8wpOdX2UKGgGR8BFBSIpH7P6aAdLfWgIR0BzynOmixmkdX2UKGgGR8BLs9/jKgZkaAdLp2gIR0BzyqkcjqwAdX2UKGgGR8A0pyMDOkckaAdLj2gIR0BzyoIrvsqsdX2UKGgGR8A9xG+K0lZ6aAdLgGgIR0BzzT/MnqmkdX2UKGgGR8BFId0zTF2naAdLY2gIR0BzzbEETxoadX2UKGgGR8BRpyMkyDZlaAdLf2gIR0Bzzak690zTdX2UKGgGR8BFsIzFdcB2aAdLgmgIR0BzzlhmXgLrdX2UKGgGR8AoDlxOtW+5aAdLlWgIR0BzzyXUpd8idX2UKGgGR8Axz/20zCUHaAdLhmgIR0Bz0D8EV32VdX2UKGgGR8BK11ivxH5KaAdLamgIR0Bz0F8neBQOdX2UKGgGR8BC+UCzTnaGaAdLomgIR0Bz0Tp/wy6+dX2UKGgGR0BD/0kOZssQaAdLe2gIR0Bz00vYe1a4dX2UKGgGR8AnmrI5o4+9aAdLeWgIR0Bz01VghKUWdX2UKGgGR8BhXQdn003waAdLkWgIR0Bz0/cXWOIZdX2UKGgGR0AxhHPu5SWJaAdLZWgIR0Bz1JAood+5dX2UKGgGR8A/kQPZqVQiaAdLn2gIR0Bz1JruYx+KdX2UKGgGR0A+07l7tzCDaAdLnGgIR0Bz1LYRNATqdX2UKGgGR8BP8Dj7yhBaaAdLjGgIR0Bz1L3N9ph4dX2UKGgGR8BBhHPNVzZIaAdLkWgIR0Bz1T7MxGlRdX2UKGgGR8AyspQ1rIo3aAdLZWgIR0Bz1aD8LroodX2UKGgGR0Al4udwvQF+aAdLjWgIR0Bz17hOxjaxdX2UKGgGR8BECQS8J2MbaAdLn2gIR0Bz2ULlV94NdX2UKGgGR8A2NAZKnNxEaAdLgGgIR0Bz2dGtp22YdX2UKGgGR8Br8Ax+KCQLaAdL22gIR0Bz2iDbrTpgdX2UKGgGR0AhRQUpNKywaAdLmWgIR0Bz2ng62fCidX2UKGgGR8A+1rC3w1BMaAdLZWgIR0Bz2shUzbeudX2UKGgGR8BCPlCb+cYqaAdLZWgIR0Bz3AWykbgkdX2UKGgGR8BGKiSRr8BNaAdLYWgIR0Bz3H3j+717dX2UKGgGR8BMXMNtqHoHaAdLd2gIR0Bz3MqJ/G2kdX2UKGgGR8BEQ1/2Cdz5aAdLgWgIR0Bz3OKrJbMYdX2UKGgGR8BQV6xC6YmcaAdLrmgIR0Bz3SmvW6K+dX2UKGgGR8BOAuvECNjtaAdLpWgIR0Bz3XZh8YygdX2UKGgGR8ASXy08eS0TaAdLhGgIR0Bz3j1dxAB1dX2UKGgGR0A2hI4EOiFkaAdLjmgIR0Bz3xBIFvAHdX2UKGgGR8BGn/bsWweOaAdLjWgIR0Bz3/PnjhkzdX2UKGgGR0BCkvfbblBAaAdLn2gIR0Bz4Dz5GjKxdX2UKGgGR8AntC5VfeDWaAdLY2gIR0Bz4GcFyJbddX2UKGgGR8BEZ0ZeiSJTaAdLemgIR0Bz4LQhOgxrdX2UKGgGR8AAn/R3NcGDaAdLe2gIR0Bz5qG47Rv4dX2UKGgGR8AzTAeaKDTSaAdLgWgIR0Bz577DVH4HdX2UKGgGR8A/fHUtqYZ3aAdLiWgIR0Bz6AIJJGvwdX2UKGgGR8BASAXuVopQaAdLkWgIR0Bz6AEjgQ6IdX2UKGgGR8At92A5Jbt7aAdLdmgIR0Bz6Jf7aZhKdX2UKGgGR8BBMkB0ZFXraAdLfWgIR0Bz6LCzkZJkdX2UKGgGR8BDHgzguRLcaAdLXmgIR0Bz6Le7+T/ydX2UKGgGR8ArFY6GQCCBaAdLd2gIR0Bz6WfAbhm5dX2UKGgGR8BNpbqyGBWgaAdLgmgIR0Bz6dG7SRbKdX2UKGgGR8BLqFUZNwiraAdLYWgIR0Bz6dkAggX/dX2UKGgGR8BZ2PKlpGnXaAdLVmgIR0Bz6qw0O3DvdX2UKGgGR8BG+MPBi1AraAdLZGgIR0Bz61z4k/r0dX2UKGgGR8BBoZ8rqdH2aAdLl2gIR0Bz6+VKPGQ0dX2UKGgGR0AkRMfRu0kXaAdLdmgIR0Bz7HV6NVBEdX2UKGgGR8BWXaXnhbW3aAdLU2gIR0Bz7JtEXtSidX2UKGgGR8BWRffj0cwQaAdLrGgIR0Bz7NFmWdEtdX2UKGgGR8AglEsrd30PaAdLmWgIR0Bz7oVnEl3RdX2UKGgGR8BM/FLnLaEjaAdLWGgIR0Bz7tHlOoHcdX2UKGgGR8BPHRLkCFK1aAdLR2gIR0Bz7rNPgvUSdX2UKGgGR8Aq0ypJf6XTaAdLdWgIR0Bz8NZ9uxbCdX2UKGgGR8BIu7212JSBaAdLf2gIR0Bz8MBZIQOGdX2UKGgGR8Ay9M1jy4FzaAdLgmgIR0Bz8ooUi6g/dX2UKGgGR7/vAmZ3LV4HaAdLg2gIR0Bz8wvZh8YydX2UKGgGR8BTWw+Y+jdpaAdLXmgIR0Bz8yHFglWwdX2UKGgGR8AXIrOJLuhLaAdLamgIR0Bz83SPU8V6dX2UKGgGR8BDEzH0btJGaAdLn2gIR0Bz811MdtEYdX2UKGgGR8A3/4CIUJv6aAdLoWgIR0Bz84An2IwedX2UKGgGR8A6dCGN70FsaAdLfWgIR0Bz85Xo1UEQdX2UKGgGR8A297PY4ACGaAdLV2gIR0Bz9MOQQtjDdX2UKGgGR8A3uPOY6XByaAdLY2gIR0Bz9eZE2HcldX2UKGgGR8AlzX7tRekYaAdLu2gIR0Bz9fCqIacadX2UKGgGR8A74Sl3yI56aAdLoWgIR0Bz9rTc6/7BdX2UKGgGR8BHEjcmBvrGaAdLWWgIR0Bz9wz0pVjqdX2UKGgGR8AgYKNyYG+saAdLsmgIR0Bz+XEETxoadX2UKGgGR8BB3JCrtE5RaAdLemgIR0Bz+ZQrMC9zdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 33, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2_total_timesteps.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e29656e8599795e48cf28297838e79988ad1e5f6a4f1766553d09fb509e39b4f
|
3 |
+
size 147947
|
ppo-LunarLander-v2_total_timesteps/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2_total_timesteps/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7855bdaf8e50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7855bdaf8ee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7855bdaf8f70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7855bdaf9000>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7855bdaf9090>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7855bdaf9120>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7855bdaf91b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7855bdaf9240>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7855bdaf92d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7855bdaf9360>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7855bdaf93f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7855bdaf9480>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7855bdc8f500>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 114688,
|
25 |
+
"_total_timesteps": 100000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1717874258873135472,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1YWD2XTFk/VA+EPlr4H78dH16+bhCIPQAAAAAAAAAANiNNvpG9hT7GffK9NZYKvy/aBL2jqgo9AAAAAAAAAABmeGw8YZWzPzow/T7JZ+S9dgiBvNi5xb0AAAAAAAAAAACANrtYrKg/APztvNsq8b5hyA++TfAWPgAAAAAAAAAAzf+jvAEusz9ye/++nA8avoronzzOT4A9AAAAAAAAAAAmoba+x9IbP9LGDb0BDEy/Ssz3vuXXAT4AAAAAAAAAANCAp770q5Y/SpcBvzKCnL60YKa+6GrfvQAAAAAAAAAAUAAtP33gZT7A9rw+L0lFvxmMBb7A9N88AAAAAAAAAADmoh49ybOSP+7WG7tgVPS+9O1EPsMt4j0AAAAAAAAAAH4k+L6i4Uc/yQ2AvqTiLr/9Pea++TMsvgAAAAAAAAAAc3+6vVTdhD4tTgs+rXEav/RUPr4iPI28AAAAAAAAAAAA1ku9ASCtP0/6Kb2kIUS+4eLQvKsRwb0AAAAAAAAAAJrraj7frYw/Lq4eP8p6Bb9bRog9dEOOPgAAAAAAAAAAfS4PPyLYIL6wtPk+pFifvol7gbs12E+/AAAAAAAAAACtK82+QnUjPn6bJ77Jzjq/9D8WviY0xLwAAAAAAAAAAGASib6geUQ/2AiCPg5jPr+EGSC/bwQgPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.1468799999999999,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCx+ryUcGTuMAWyUS2WMAXSUR0BzuqapgkTpdX2UKGgGR8BSjRqCYkVvaAdLUmgIR0Bzu6Ts6aLGdX2UKGgGR8A59h6Skj5caAdLZmgIR0Bzu9Tzd1uBdX2UKGgGR8A9tJOWSlnAaAdLbGgIR0Bzu/ustCiRdX2UKGgGR8BTOOVLSNOuaAdLe2gIR0BzvSaqjrRjdX2UKGgGR8ArFk1dgOSXaAdLj2gIR0Bzvc+A3DNydX2UKGgGR8BRksQ/X5FgaAdLl2gIR0Bzvi33Hq/udX2UKGgGR8BRblZs9B8haAdLg2gIR0BzvlqBVdX1dX2UKGgGR8BF4WVeKKpDaAdLrGgIR0Bzv8Jmdy1edX2UKGgGR8BXfdyYG+sYaAdLkWgIR0BzwFX1anrIdX2UKGgGR8BTMCb+cYqHaAdLx2gIR0BzwHNLUTcqdX2UKGgGR8A5DJZntfG/aAdLj2gIR0BzwPxjJ+2FdX2UKGgGR8A1nZDzAeq8aAdLjmgIR0BzwRK6FuejdX2UKGgGR8BMiBo/RmbtaAdLeGgIR0BzweoP07KadX2UKGgGR8A4nac7QswtaAdLemgIR0Bzw1dqtYCAdX2UKGgGR8BGOhnrY5DJaAdLVWgIR0Bzw9YHPeHjdX2UKGgGR8BI1uNxVAAyaAdLqWgIR0Bzw9pItlI3dX2UKGgGR8AzFFoL5RCQaAdLemgIR0BzxFkK/mDEdX2UKGgGR8BNsnw5NoJzaAdLXWgIR0BzxOo3rD64dX2UKGgGR8BAKlBIFvAHaAdLjWgIR0BzxdcmjTKDdX2UKGgGR8BLDNrj5sTGaAdLsmgIR0Bzxfddmg8KdX2UKGgGR0ABzjFQ2uPnaAdLbWgIR0BzyC7iADq4dX2UKGgGR8AwTtix3V0+aAdLrmgIR0BzyJkDp1RtdX2UKGgGR8BKGrEk0JnhaAdLYWgIR0BzyRgfEGaAdX2UKGgGR8BM06UJOWSmaAdLomgIR0BzyQlpoK2KdX2UKGgGR8BM1bIcR15jaAdLgWgIR0BzydAv+OwQdX2UKGgGR8BLcOgpSaVlaAdLfGgIR0Bzyice8wpOdX2UKGgGR8BFBSIpH7P6aAdLfWgIR0BzynOmixmkdX2UKGgGR8BLs9/jKgZkaAdLp2gIR0BzyqkcjqwAdX2UKGgGR8A0pyMDOkckaAdLj2gIR0BzyoIrvsqsdX2UKGgGR8A9xG+K0lZ6aAdLgGgIR0BzzT/MnqmkdX2UKGgGR8BFId0zTF2naAdLY2gIR0BzzbEETxoadX2UKGgGR8BRpyMkyDZlaAdLf2gIR0Bzzak690zTdX2UKGgGR8BFsIzFdcB2aAdLgmgIR0BzzlhmXgLrdX2UKGgGR8AoDlxOtW+5aAdLlWgIR0BzzyXUpd8idX2UKGgGR8Axz/20zCUHaAdLhmgIR0Bz0D8EV32VdX2UKGgGR8BK11ivxH5KaAdLamgIR0Bz0F8neBQOdX2UKGgGR8BC+UCzTnaGaAdLomgIR0Bz0Tp/wy6+dX2UKGgGR0BD/0kOZssQaAdLe2gIR0Bz00vYe1a4dX2UKGgGR8AnmrI5o4+9aAdLeWgIR0Bz01VghKUWdX2UKGgGR8BhXQdn003waAdLkWgIR0Bz0/cXWOIZdX2UKGgGR0AxhHPu5SWJaAdLZWgIR0Bz1JAood+5dX2UKGgGR8A/kQPZqVQiaAdLn2gIR0Bz1JruYx+KdX2UKGgGR0A+07l7tzCDaAdLnGgIR0Bz1LYRNATqdX2UKGgGR8BP8Dj7yhBaaAdLjGgIR0Bz1L3N9ph4dX2UKGgGR8BBhHPNVzZIaAdLkWgIR0Bz1T7MxGlRdX2UKGgGR8AyspQ1rIo3aAdLZWgIR0Bz1aD8LroodX2UKGgGR0Al4udwvQF+aAdLjWgIR0Bz17hOxjaxdX2UKGgGR8BECQS8J2MbaAdLn2gIR0Bz2ULlV94NdX2UKGgGR8A2NAZKnNxEaAdLgGgIR0Bz2dGtp22YdX2UKGgGR8Br8Ax+KCQLaAdL22gIR0Bz2iDbrTpgdX2UKGgGR0AhRQUpNKywaAdLmWgIR0Bz2ng62fCidX2UKGgGR8A+1rC3w1BMaAdLZWgIR0Bz2shUzbeudX2UKGgGR8BCPlCb+cYqaAdLZWgIR0Bz3AWykbgkdX2UKGgGR8BGKiSRr8BNaAdLYWgIR0Bz3H3j+717dX2UKGgGR8BMXMNtqHoHaAdLd2gIR0Bz3MqJ/G2kdX2UKGgGR8BEQ1/2Cdz5aAdLgWgIR0Bz3OKrJbMYdX2UKGgGR8BQV6xC6YmcaAdLrmgIR0Bz3SmvW6K+dX2UKGgGR8BOAuvECNjtaAdLpWgIR0Bz3XZh8YygdX2UKGgGR8ASXy08eS0TaAdLhGgIR0Bz3j1dxAB1dX2UKGgGR0A2hI4EOiFkaAdLjmgIR0Bz3xBIFvAHdX2UKGgGR8BGn/bsWweOaAdLjWgIR0Bz3/PnjhkzdX2UKGgGR0BCkvfbblBAaAdLn2gIR0Bz4Dz5GjKxdX2UKGgGR8AntC5VfeDWaAdLY2gIR0Bz4GcFyJbddX2UKGgGR8BEZ0ZeiSJTaAdLemgIR0Bz4LQhOgxrdX2UKGgGR8AAn/R3NcGDaAdLe2gIR0Bz5qG47Rv4dX2UKGgGR8AzTAeaKDTSaAdLgWgIR0Bz577DVH4HdX2UKGgGR8A/fHUtqYZ3aAdLiWgIR0Bz6AIJJGvwdX2UKGgGR8BASAXuVopQaAdLkWgIR0Bz6AEjgQ6IdX2UKGgGR8At92A5Jbt7aAdLdmgIR0Bz6Jf7aZhKdX2UKGgGR8BBMkB0ZFXraAdLfWgIR0Bz6LCzkZJkdX2UKGgGR8BDHgzguRLcaAdLXmgIR0Bz6Le7+T/ydX2UKGgGR8ArFY6GQCCBaAdLd2gIR0Bz6WfAbhm5dX2UKGgGR8BNpbqyGBWgaAdLgmgIR0Bz6dG7SRbKdX2UKGgGR8BLqFUZNwiraAdLYWgIR0Bz6dkAggX/dX2UKGgGR8BZ2PKlpGnXaAdLVmgIR0Bz6qw0O3DvdX2UKGgGR8BG+MPBi1AraAdLZGgIR0Bz61z4k/r0dX2UKGgGR8BBoZ8rqdH2aAdLl2gIR0Bz6+VKPGQ0dX2UKGgGR0AkRMfRu0kXaAdLdmgIR0Bz7HV6NVBEdX2UKGgGR8BWXaXnhbW3aAdLU2gIR0Bz7JtEXtSidX2UKGgGR8BWRffj0cwQaAdLrGgIR0Bz7NFmWdEtdX2UKGgGR8AglEsrd30PaAdLmWgIR0Bz7oVnEl3RdX2UKGgGR8BM/FLnLaEjaAdLWGgIR0Bz7tHlOoHcdX2UKGgGR8BPHRLkCFK1aAdLR2gIR0Bz7rNPgvUSdX2UKGgGR8Aq0ypJf6XTaAdLdWgIR0Bz8NZ9uxbCdX2UKGgGR8BIu7212JSBaAdLf2gIR0Bz8MBZIQOGdX2UKGgGR8Ay9M1jy4FzaAdLgmgIR0Bz8ooUi6g/dX2UKGgGR7/vAmZ3LV4HaAdLg2gIR0Bz8wvZh8YydX2UKGgGR8BTWw+Y+jdpaAdLXmgIR0Bz8yHFglWwdX2UKGgGR8AXIrOJLuhLaAdLamgIR0Bz83SPU8V6dX2UKGgGR8BDEzH0btJGaAdLn2gIR0Bz811MdtEYdX2UKGgGR8A3/4CIUJv6aAdLoWgIR0Bz84An2IwedX2UKGgGR8A6dCGN70FsaAdLfWgIR0Bz85Xo1UEQdX2UKGgGR8A297PY4ACGaAdLV2gIR0Bz9MOQQtjDdX2UKGgGR8A3uPOY6XByaAdLY2gIR0Bz9eZE2HcldX2UKGgGR8AlzX7tRekYaAdLu2gIR0Bz9fCqIacadX2UKGgGR8A74Sl3yI56aAdLoWgIR0Bz9rTc6/7BdX2UKGgGR8BHEjcmBvrGaAdLWWgIR0Bz9wz0pVjqdX2UKGgGR8AgYKNyYG+saAdLsmgIR0Bz+XEETxoadX2UKGgGR8BB3JCrtE5RaAdLemgIR0Bz+ZQrMC9zdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 33,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2_total_timesteps/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60b775a675c03ee1f33f4f63108beb7434d89cd790b547b4964a30a12a1f07fa
|
3 |
+
size 88362
|
ppo-LunarLander-v2_total_timesteps/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a7aced2a7349f43164273c658868f92abacab51956bef25b56461b723241684
|
3 |
+
size 43762
|
ppo-LunarLander-v2_total_timesteps/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2_total_timesteps/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (144 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -259.1138818549545, "std_reward": 47.69691235305555, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-08T19:24:59.355066"}
|