cls_fomc_llama3_v3 / README.md
Sorour's picture
Model save
4dcd90c verified
|
raw
history blame
1.6 kB
---
license: llama3
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B-Instruct
datasets:
- generator
model-index:
- name: cls_fomc_llama3_v3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cls_fomc_llama3_v3
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6506
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.6633 | 0.6723 | 20 | 0.6636 |
| 0.5372 | 1.3445 | 40 | 0.6506 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1