aarimond commited on
Commit
809cd15
1 Parent(s): 840408a

added model

Browse files
Files changed (3) hide show
  1. README.md +11 -12
  2. config.json +3 -3
  3. model.joblib +2 -2
README.md CHANGED
@@ -9,10 +9,9 @@ model_file: model.joblib
9
  widget:
10
  structuredData:
11
  LegalName:
12
- - United Partners Sp. z o.o.
13
- - 'RAFAŁ SZYMAŃSKI : IMPORT- EXPORT "RAFAEL"; STUDIO TAŃCA "PASJA" ,RAFAEL LOGISTICS,
14
- VILLA LUANDA'
15
- - Fabryka Pierścieni Tłokowych "Prima" S.A. w Łodzi
16
  ---
17
 
18
  # Model description
@@ -35,20 +34,20 @@ The model is trained with below hyperparameters.
35
  | Hyperparameter | Value |
36
  |------------------------------------------------------|----------------------------------------------------------------|
37
  | memory | |
38
- | steps | [('feature_extraction', ColumnTransformer(transformers=[('abbreviations',<br /> <__main__.ELFAbbreviationTransformer object at 0x7f38e5329160>,<br /> 0),<br /> ('tokenizer',<br /> CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<function tokenize at 0x7f38e46cb700>),<br /> 0)])), ('classifier', ComplementNB())] |
39
  | verbose | False |
40
- | feature_extraction | ColumnTransformer(transformers=[('abbreviations',<br /> <__main__.ELFAbbreviationTransformer object at 0x7f38e5329160>,<br /> 0),<br /> ('tokenizer',<br /> CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<function tokenize at 0x7f38e46cb700>),<br /> 0)]) |
41
  | classifier | ComplementNB() |
42
  | feature_extraction__n_jobs | |
43
  | feature_extraction__remainder | drop |
44
  | feature_extraction__sparse_threshold | 0.3 |
45
  | feature_extraction__transformer_weights | |
46
- | feature_extraction__transformers | [('abbreviations', <__main__.ELFAbbreviationTransformer object at 0x7f38e5329160>, 0), ('tokenizer', CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<function tokenize at 0x7f38e46cb700>), 0)] |
47
  | feature_extraction__verbose | False |
48
  | feature_extraction__verbose_feature_names_out | True |
49
- | feature_extraction__abbreviations | <__main__.ELFAbbreviationTransformer object at 0x7f38e5329160> |
50
- | feature_extraction__tokenizer | CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<function tokenize at 0x7f38e46cb700>) |
51
- | feature_extraction__abbreviations__elf_abbreviations | <__main__.ELFAbbreviations object at 0x7f38ebe22be0> |
52
  | feature_extraction__abbreviations__jurisdiction | PL |
53
  | feature_extraction__abbreviations__use_endswith | True |
54
  | feature_extraction__abbreviations__use_lowercasing | True |
@@ -67,7 +66,7 @@ The model is trained with below hyperparameters.
67
  | feature_extraction__tokenizer__stop_words | |
68
  | feature_extraction__tokenizer__strip_accents | |
69
  | feature_extraction__tokenizer__token_pattern | (?u)\b\w\w+\b |
70
- | feature_extraction__tokenizer__tokenizer | <function tokenize at 0x7f38e46cb700> |
71
  | feature_extraction__tokenizer__vocabulary | |
72
  | classifier__alpha | 1.0 |
73
  | classifier__class_prior | |
@@ -80,7 +79,7 @@ The model is trained with below hyperparameters.
80
 
81
  The model plot is below.
82
 
83
- <style>#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b {color: black;background-color: white;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b pre{padding: 0;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-toggleable {background-color: white;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-estimator:hover {background-color: #d4ebff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-item {z-index: 1;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel-item:only-child::after {width: 0;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-text-repr-fallback {display: none;}</style><div id="sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;feature_extraction&#x27;,ColumnTransformer(transformers=[(&#x27;abbreviations&#x27;,&lt;__main__.ELFAbbreviationTransformer object at 0x7f38e5329160&gt;,0),(&#x27;tokenizer&#x27;,CountVectorizer(binary=True,lowercase=False,tokenizer=&lt;function tokenize at 0x7f38e46cb700&gt;),0)])),(&#x27;classifier&#x27;, ComplementNB())])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="6c657019-d3cc-4bd2-acbf-c35e96ec9647" type="checkbox" ><label for="6c657019-d3cc-4bd2-acbf-c35e96ec9647" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;feature_extraction&#x27;,ColumnTransformer(transformers=[(&#x27;abbreviations&#x27;,&lt;__main__.ELFAbbreviationTransformer object at 0x7f38e5329160&gt;,0),(&#x27;tokenizer&#x27;,CountVectorizer(binary=True,lowercase=False,tokenizer=&lt;function tokenize at 0x7f38e46cb700&gt;),0)])),(&#x27;classifier&#x27;, ComplementNB())])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="008a36e9-520c-4037-85bc-861bce722ea9" type="checkbox" ><label for="008a36e9-520c-4037-85bc-861bce722ea9" class="sk-toggleable__label sk-toggleable__label-arrow">feature_extraction: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;abbreviations&#x27;,&lt;__main__.ELFAbbreviationTransformer object at 0x7f38e5329160&gt;,0),(&#x27;tokenizer&#x27;,CountVectorizer(binary=True, lowercase=False,tokenizer=&lt;function tokenize at 0x7f38e46cb700&gt;),0)])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="fc8382d0-2ecc-4ffe-9551-4fd3f22ab155" type="checkbox" ><label for="fc8382d0-2ecc-4ffe-9551-4fd3f22ab155" class="sk-toggleable__label sk-toggleable__label-arrow">abbreviations</label><div class="sk-toggleable__content"><pre>0</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ae011248-bf0c-4a79-a2d0-2816108a637c" type="checkbox" ><label for="ae011248-bf0c-4a79-a2d0-2816108a637c" class="sk-toggleable__label sk-toggleable__label-arrow">ELFAbbreviationTransformer</label><div class="sk-toggleable__content"><pre>&lt;__main__.ELFAbbreviationTransformer object at 0x7f38e5329160&gt;</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="bdd4bd27-45c9-466f-93a2-63d412751505" type="checkbox" ><label for="bdd4bd27-45c9-466f-93a2-63d412751505" class="sk-toggleable__label sk-toggleable__label-arrow">tokenizer</label><div class="sk-toggleable__content"><pre>0</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="1a132d4a-141d-4f64-a7a1-5e2de5a882ec" type="checkbox" ><label for="1a132d4a-141d-4f64-a7a1-5e2de5a882ec" class="sk-toggleable__label sk-toggleable__label-arrow">CountVectorizer</label><div class="sk-toggleable__content"><pre>CountVectorizer(binary=True, lowercase=False,tokenizer=&lt;function tokenize at 0x7f38e46cb700&gt;)</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="d8b42ef3-dbfe-4f5b-a6b9-a09031f4b76c" type="checkbox" ><label for="d8b42ef3-dbfe-4f5b-a6b9-a09031f4b76c" class="sk-toggleable__label sk-toggleable__label-arrow">ComplementNB</label><div class="sk-toggleable__content"><pre>ComplementNB()</pre></div></div></div></div></div></div></div>
84
 
85
  ## Evaluation Results
86
 
 
9
  widget:
10
  structuredData:
11
  LegalName:
12
+ - TECH LAKE SYSTEMS SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ
13
+ - Radosław Wiśniewski wspólnik spółki cywilnej Agenda
14
+ - SINOGRAF SPÓŁKA AKCYJNA
 
15
  ---
16
 
17
  # Model description
 
34
  | Hyperparameter | Value |
35
  |------------------------------------------------------|----------------------------------------------------------------|
36
  | memory | |
37
+ | steps | [('feature_extraction', ColumnTransformer(transformers=[('abbreviations',<br /> <__main__.ELFAbbreviationTransformer object at 0x7f38e1fc3310>,<br /> 0),<br /> ('tokenizer',<br /> CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<function tokenize at 0x7f38e9fd4a60>),<br /> 0)])), ('classifier', ComplementNB())] |
38
  | verbose | False |
39
+ | feature_extraction | ColumnTransformer(transformers=[('abbreviations',<br /> <__main__.ELFAbbreviationTransformer object at 0x7f38e1fc3310>,<br /> 0),<br /> ('tokenizer',<br /> CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<function tokenize at 0x7f38e9fd4a60>),<br /> 0)]) |
40
  | classifier | ComplementNB() |
41
  | feature_extraction__n_jobs | |
42
  | feature_extraction__remainder | drop |
43
  | feature_extraction__sparse_threshold | 0.3 |
44
  | feature_extraction__transformer_weights | |
45
+ | feature_extraction__transformers | [('abbreviations', <__main__.ELFAbbreviationTransformer object at 0x7f38e1fc3310>, 0), ('tokenizer', CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<function tokenize at 0x7f38e9fd4a60>), 0)] |
46
  | feature_extraction__verbose | False |
47
  | feature_extraction__verbose_feature_names_out | True |
48
+ | feature_extraction__abbreviations | <__main__.ELFAbbreviationTransformer object at 0x7f38e1fc3310> |
49
+ | feature_extraction__tokenizer | CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<function tokenize at 0x7f38e9fd4a60>) |
50
+ | feature_extraction__abbreviations__elf_abbreviations | <__main__.ELFAbbreviations object at 0x7f38e1f10220> |
51
  | feature_extraction__abbreviations__jurisdiction | PL |
52
  | feature_extraction__abbreviations__use_endswith | True |
53
  | feature_extraction__abbreviations__use_lowercasing | True |
 
66
  | feature_extraction__tokenizer__stop_words | |
67
  | feature_extraction__tokenizer__strip_accents | |
68
  | feature_extraction__tokenizer__token_pattern | (?u)\b\w\w+\b |
69
+ | feature_extraction__tokenizer__tokenizer | <function tokenize at 0x7f38e9fd4a60> |
70
  | feature_extraction__tokenizer__vocabulary | |
71
  | classifier__alpha | 1.0 |
72
  | classifier__class_prior | |
 
79
 
80
  The model plot is below.
81
 
82
+ <style>#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 {color: black;background-color: white;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 pre{padding: 0;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-toggleable {background-color: white;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-estimator:hover {background-color: #d4ebff;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-item {z-index: 1;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-parallel-item:only-child::after {width: 0;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-c81767c7-d9d8-4769-ac5d-4b45f8890723 div.sk-text-repr-fallback {display: none;}</style><div id="sk-c81767c7-d9d8-4769-ac5d-4b45f8890723" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;feature_extraction&#x27;,ColumnTransformer(transformers=[(&#x27;abbreviations&#x27;,&lt;__main__.ELFAbbreviationTransformer object at 0x7f38e1fc3310&gt;,0),(&#x27;tokenizer&#x27;,CountVectorizer(binary=True,lowercase=False,tokenizer=&lt;function tokenize at 0x7f38e9fd4a60&gt;),0)])),(&#x27;classifier&#x27;, ComplementNB())])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="7f00d457-5727-4740-99d7-a67bc34935ac" type="checkbox" ><label for="7f00d457-5727-4740-99d7-a67bc34935ac" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;feature_extraction&#x27;,ColumnTransformer(transformers=[(&#x27;abbreviations&#x27;,&lt;__main__.ELFAbbreviationTransformer object at 0x7f38e1fc3310&gt;,0),(&#x27;tokenizer&#x27;,CountVectorizer(binary=True,lowercase=False,tokenizer=&lt;function tokenize at 0x7f38e9fd4a60&gt;),0)])),(&#x27;classifier&#x27;, ComplementNB())])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="5dd188cf-eddf-4755-ba7a-1d04df0a93ce" type="checkbox" ><label for="5dd188cf-eddf-4755-ba7a-1d04df0a93ce" class="sk-toggleable__label sk-toggleable__label-arrow">feature_extraction: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;abbreviations&#x27;,&lt;__main__.ELFAbbreviationTransformer object at 0x7f38e1fc3310&gt;,0),(&#x27;tokenizer&#x27;,CountVectorizer(binary=True, lowercase=False,tokenizer=&lt;function tokenize at 0x7f38e9fd4a60&gt;),0)])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b88e1154-d09d-483f-8022-dbb832f1b5d6" type="checkbox" ><label for="b88e1154-d09d-483f-8022-dbb832f1b5d6" class="sk-toggleable__label sk-toggleable__label-arrow">abbreviations</label><div class="sk-toggleable__content"><pre>0</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="58a31e39-15f6-44a5-bc43-3d278c14db81" type="checkbox" ><label for="58a31e39-15f6-44a5-bc43-3d278c14db81" class="sk-toggleable__label sk-toggleable__label-arrow">ELFAbbreviationTransformer</label><div class="sk-toggleable__content"><pre>&lt;__main__.ELFAbbreviationTransformer object at 0x7f38e1fc3310&gt;</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="008f948d-968e-432e-b9bb-4f7fce72a248" type="checkbox" ><label for="008f948d-968e-432e-b9bb-4f7fce72a248" class="sk-toggleable__label sk-toggleable__label-arrow">tokenizer</label><div class="sk-toggleable__content"><pre>0</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="26441d6e-c365-4cd3-84d9-44068e298da1" type="checkbox" ><label for="26441d6e-c365-4cd3-84d9-44068e298da1" class="sk-toggleable__label sk-toggleable__label-arrow">CountVectorizer</label><div class="sk-toggleable__content"><pre>CountVectorizer(binary=True, lowercase=False,tokenizer=&lt;function tokenize at 0x7f38e9fd4a60&gt;)</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="75a60a57-701f-4e72-9ca6-f6deb6ef119f" type="checkbox" ><label for="75a60a57-701f-4e72-9ca6-f6deb6ef119f" class="sk-toggleable__label sk-toggleable__label-arrow">ComplementNB</label><div class="sk-toggleable__content"><pre>ComplementNB()</pre></div></div></div></div></div></div></div>
83
 
84
  ## Evaluation Results
85
 
config.json CHANGED
@@ -10,9 +10,9 @@
10
  ],
11
  "example_input": {
12
  "LegalName": [
13
- "United Partners Sp. z o.o.",
14
- "RAFA\u0141 SZYMA\u0143SKI : IMPORT- EXPORT \"RAFAEL\"; STUDIO TA\u0143CA \"PASJA\" ,RAFAEL LOGISTICS, VILLA LUANDA",
15
- "Fabryka Pier\u015bcieni T\u0142okowych \"Prima\" S.A. w \u0141odzi"
16
  ]
17
  },
18
  "model": {
 
10
  ],
11
  "example_input": {
12
  "LegalName": [
13
+ "TECH LAKE SYSTEMS SP\u00d3\u0141KA Z OGRANICZON\u0104 ODPOWIEDZIALNO\u015aCI\u0104",
14
+ "Rados\u0142aw Wi\u015bniewski wsp\u00f3lnik sp\u00f3\u0142ki cywilnej Agenda",
15
+ "SINOGRAF SP\u00d3\u0141KA AKCYJNA"
16
  ]
17
  },
18
  "model": {
model.joblib CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cfdd13517f6b615f898eeef17f64d966147e5d6af553e2d7f0c194526f6e0209
3
- size 10283757
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d919345fe63921c5b2300c2c2e0977c82de304abad0e22feb2afdde13571b286
3
+ size 10283805