aarimond commited on
Commit
840408a
1 Parent(s): cd74b30

added model

Browse files
Files changed (3) hide show
  1. README.md +116 -0
  2. config.json +25 -0
  3. model.joblib +3 -0
README.md ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sklearn
3
+ tags:
4
+ - sklearn
5
+ - skops
6
+ - tabular-classification
7
+ model_format: pickle
8
+ model_file: model.joblib
9
+ widget:
10
+ structuredData:
11
+ LegalName:
12
+ - United Partners Sp. z o.o.
13
+ - 'RAFAŁ SZYMAŃSKI : IMPORT- EXPORT "RAFAEL"; STUDIO TAŃCA "PASJA" ,RAFAEL LOGISTICS,
14
+ VILLA LUANDA'
15
+ - Fabryka Pierścieni Tłokowych "Prima" S.A. w Łodzi
16
+ ---
17
+
18
+ # Model description
19
+
20
+ [More Information Needed]
21
+
22
+ ## Intended uses & limitations
23
+
24
+ [More Information Needed]
25
+
26
+ ## Training Procedure
27
+
28
+ ### Hyperparameters
29
+
30
+ The model is trained with below hyperparameters.
31
+
32
+ <details>
33
+ <summary> Click to expand </summary>
34
+
35
+ | Hyperparameter | Value |
36
+ |------------------------------------------------------|----------------------------------------------------------------|
37
+ | memory | |
38
+ | steps | [('feature_extraction', ColumnTransformer(transformers=[('abbreviations',<br /> <__main__.ELFAbbreviationTransformer object at 0x7f38e5329160>,<br /> 0),<br /> ('tokenizer',<br /> CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<function tokenize at 0x7f38e46cb700>),<br /> 0)])), ('classifier', ComplementNB())] |
39
+ | verbose | False |
40
+ | feature_extraction | ColumnTransformer(transformers=[('abbreviations',<br /> <__main__.ELFAbbreviationTransformer object at 0x7f38e5329160>,<br /> 0),<br /> ('tokenizer',<br /> CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<function tokenize at 0x7f38e46cb700>),<br /> 0)]) |
41
+ | classifier | ComplementNB() |
42
+ | feature_extraction__n_jobs | |
43
+ | feature_extraction__remainder | drop |
44
+ | feature_extraction__sparse_threshold | 0.3 |
45
+ | feature_extraction__transformer_weights | |
46
+ | feature_extraction__transformers | [('abbreviations', <__main__.ELFAbbreviationTransformer object at 0x7f38e5329160>, 0), ('tokenizer', CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<function tokenize at 0x7f38e46cb700>), 0)] |
47
+ | feature_extraction__verbose | False |
48
+ | feature_extraction__verbose_feature_names_out | True |
49
+ | feature_extraction__abbreviations | <__main__.ELFAbbreviationTransformer object at 0x7f38e5329160> |
50
+ | feature_extraction__tokenizer | CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<function tokenize at 0x7f38e46cb700>) |
51
+ | feature_extraction__abbreviations__elf_abbreviations | <__main__.ELFAbbreviations object at 0x7f38ebe22be0> |
52
+ | feature_extraction__abbreviations__jurisdiction | PL |
53
+ | feature_extraction__abbreviations__use_endswith | True |
54
+ | feature_extraction__abbreviations__use_lowercasing | True |
55
+ | feature_extraction__tokenizer__analyzer | word |
56
+ | feature_extraction__tokenizer__binary | True |
57
+ | feature_extraction__tokenizer__decode_error | strict |
58
+ | feature_extraction__tokenizer__dtype | <class 'numpy.int64'> |
59
+ | feature_extraction__tokenizer__encoding | utf-8 |
60
+ | feature_extraction__tokenizer__input | content |
61
+ | feature_extraction__tokenizer__lowercase | False |
62
+ | feature_extraction__tokenizer__max_df | 1.0 |
63
+ | feature_extraction__tokenizer__max_features | |
64
+ | feature_extraction__tokenizer__min_df | 1 |
65
+ | feature_extraction__tokenizer__ngram_range | (1, 1) |
66
+ | feature_extraction__tokenizer__preprocessor | |
67
+ | feature_extraction__tokenizer__stop_words | |
68
+ | feature_extraction__tokenizer__strip_accents | |
69
+ | feature_extraction__tokenizer__token_pattern | (?u)\b\w\w+\b |
70
+ | feature_extraction__tokenizer__tokenizer | <function tokenize at 0x7f38e46cb700> |
71
+ | feature_extraction__tokenizer__vocabulary | |
72
+ | classifier__alpha | 1.0 |
73
+ | classifier__class_prior | |
74
+ | classifier__fit_prior | True |
75
+ | classifier__norm | False |
76
+
77
+ </details>
78
+
79
+ ### Model Plot
80
+
81
+ The model plot is below.
82
+
83
+ <style>#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b {color: black;background-color: white;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b pre{padding: 0;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-toggleable {background-color: white;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-estimator:hover {background-color: #d4ebff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-item {z-index: 1;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel-item:only-child::after {width: 0;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-text-repr-fallback {display: none;}</style><div id="sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;feature_extraction&#x27;,ColumnTransformer(transformers=[(&#x27;abbreviations&#x27;,&lt;__main__.ELFAbbreviationTransformer object at 0x7f38e5329160&gt;,0),(&#x27;tokenizer&#x27;,CountVectorizer(binary=True,lowercase=False,tokenizer=&lt;function tokenize at 0x7f38e46cb700&gt;),0)])),(&#x27;classifier&#x27;, ComplementNB())])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="6c657019-d3cc-4bd2-acbf-c35e96ec9647" type="checkbox" ><label for="6c657019-d3cc-4bd2-acbf-c35e96ec9647" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;feature_extraction&#x27;,ColumnTransformer(transformers=[(&#x27;abbreviations&#x27;,&lt;__main__.ELFAbbreviationTransformer object at 0x7f38e5329160&gt;,0),(&#x27;tokenizer&#x27;,CountVectorizer(binary=True,lowercase=False,tokenizer=&lt;function tokenize at 0x7f38e46cb700&gt;),0)])),(&#x27;classifier&#x27;, ComplementNB())])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="008a36e9-520c-4037-85bc-861bce722ea9" type="checkbox" ><label for="008a36e9-520c-4037-85bc-861bce722ea9" class="sk-toggleable__label sk-toggleable__label-arrow">feature_extraction: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;abbreviations&#x27;,&lt;__main__.ELFAbbreviationTransformer object at 0x7f38e5329160&gt;,0),(&#x27;tokenizer&#x27;,CountVectorizer(binary=True, lowercase=False,tokenizer=&lt;function tokenize at 0x7f38e46cb700&gt;),0)])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="fc8382d0-2ecc-4ffe-9551-4fd3f22ab155" type="checkbox" ><label for="fc8382d0-2ecc-4ffe-9551-4fd3f22ab155" class="sk-toggleable__label sk-toggleable__label-arrow">abbreviations</label><div class="sk-toggleable__content"><pre>0</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ae011248-bf0c-4a79-a2d0-2816108a637c" type="checkbox" ><label for="ae011248-bf0c-4a79-a2d0-2816108a637c" class="sk-toggleable__label sk-toggleable__label-arrow">ELFAbbreviationTransformer</label><div class="sk-toggleable__content"><pre>&lt;__main__.ELFAbbreviationTransformer object at 0x7f38e5329160&gt;</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="bdd4bd27-45c9-466f-93a2-63d412751505" type="checkbox" ><label for="bdd4bd27-45c9-466f-93a2-63d412751505" class="sk-toggleable__label sk-toggleable__label-arrow">tokenizer</label><div class="sk-toggleable__content"><pre>0</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="1a132d4a-141d-4f64-a7a1-5e2de5a882ec" type="checkbox" ><label for="1a132d4a-141d-4f64-a7a1-5e2de5a882ec" class="sk-toggleable__label sk-toggleable__label-arrow">CountVectorizer</label><div class="sk-toggleable__content"><pre>CountVectorizer(binary=True, lowercase=False,tokenizer=&lt;function tokenize at 0x7f38e46cb700&gt;)</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="d8b42ef3-dbfe-4f5b-a6b9-a09031f4b76c" type="checkbox" ><label for="d8b42ef3-dbfe-4f5b-a6b9-a09031f4b76c" class="sk-toggleable__label sk-toggleable__label-arrow">ComplementNB</label><div class="sk-toggleable__content"><pre>ComplementNB()</pre></div></div></div></div></div></div></div>
84
+
85
+ ## Evaluation Results
86
+
87
+ You can find the details about evaluation process and the evaluation results.
88
+
89
+ | Metric | Value |
90
+ |----------|----------|
91
+ | f1 | 0.971647 |
92
+ | f1 macro | 0.522164 |
93
+
94
+ # How to Get Started with the Model
95
+
96
+ [More Information Needed]
97
+
98
+ # Model Card Authors
99
+
100
+ This model card is written by following authors:
101
+
102
+ [More Information Needed]
103
+
104
+ # Model Card Contact
105
+
106
+ You can contact the model card authors through following channels:
107
+ [More Information Needed]
108
+
109
+ # Citation
110
+
111
+ Below you can find information related to citation.
112
+
113
+ **BibTeX:**
114
+ ```
115
+ [More Information Needed]
116
+ ```
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "LegalName"
5
+ ],
6
+ "environment": [
7
+ "scikit-learn=1.0.2",
8
+ "joblib=1.2.0",
9
+ "pandas=1.3.5"
10
+ ],
11
+ "example_input": {
12
+ "LegalName": [
13
+ "United Partners Sp. z o.o.",
14
+ "RAFA\u0141 SZYMA\u0143SKI : IMPORT- EXPORT \"RAFAEL\"; STUDIO TA\u0143CA \"PASJA\" ,RAFAEL LOGISTICS, VILLA LUANDA",
15
+ "Fabryka Pier\u015bcieni T\u0142okowych \"Prima\" S.A. w \u0141odzi"
16
+ ]
17
+ },
18
+ "model": {
19
+ "file": "model.joblib"
20
+ },
21
+ "model_format": "pickle",
22
+ "task": "tabular-classification",
23
+ "use_intelex": false
24
+ }
25
+ }
model.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfdd13517f6b615f898eeef17f64d966147e5d6af553e2d7f0c194526f6e0209
3
+ size 10283757