added model
Browse files- README.md +116 -0
- config.json +25 -0
- model.joblib +3 -0
README.md
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sklearn
|
3 |
+
tags:
|
4 |
+
- sklearn
|
5 |
+
- skops
|
6 |
+
- tabular-classification
|
7 |
+
model_format: pickle
|
8 |
+
model_file: model.joblib
|
9 |
+
widget:
|
10 |
+
structuredData:
|
11 |
+
LegalName:
|
12 |
+
- United Partners Sp. z o.o.
|
13 |
+
- 'RAFAŁ SZYMAŃSKI : IMPORT- EXPORT "RAFAEL"; STUDIO TAŃCA "PASJA" ,RAFAEL LOGISTICS,
|
14 |
+
VILLA LUANDA'
|
15 |
+
- Fabryka Pierścieni Tłokowych "Prima" S.A. w Łodzi
|
16 |
+
---
|
17 |
+
|
18 |
+
# Model description
|
19 |
+
|
20 |
+
[More Information Needed]
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
[More Information Needed]
|
25 |
+
|
26 |
+
## Training Procedure
|
27 |
+
|
28 |
+
### Hyperparameters
|
29 |
+
|
30 |
+
The model is trained with below hyperparameters.
|
31 |
+
|
32 |
+
<details>
|
33 |
+
<summary> Click to expand </summary>
|
34 |
+
|
35 |
+
| Hyperparameter | Value |
|
36 |
+
|------------------------------------------------------|----------------------------------------------------------------|
|
37 |
+
| memory | |
|
38 |
+
| steps | [('feature_extraction', ColumnTransformer(transformers=[('abbreviations',<br /> <__main__.ELFAbbreviationTransformer object at 0x7f38e5329160>,<br /> 0),<br /> ('tokenizer',<br /> CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<function tokenize at 0x7f38e46cb700>),<br /> 0)])), ('classifier', ComplementNB())] |
|
39 |
+
| verbose | False |
|
40 |
+
| feature_extraction | ColumnTransformer(transformers=[('abbreviations',<br /> <__main__.ELFAbbreviationTransformer object at 0x7f38e5329160>,<br /> 0),<br /> ('tokenizer',<br /> CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<function tokenize at 0x7f38e46cb700>),<br /> 0)]) |
|
41 |
+
| classifier | ComplementNB() |
|
42 |
+
| feature_extraction__n_jobs | |
|
43 |
+
| feature_extraction__remainder | drop |
|
44 |
+
| feature_extraction__sparse_threshold | 0.3 |
|
45 |
+
| feature_extraction__transformer_weights | |
|
46 |
+
| feature_extraction__transformers | [('abbreviations', <__main__.ELFAbbreviationTransformer object at 0x7f38e5329160>, 0), ('tokenizer', CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<function tokenize at 0x7f38e46cb700>), 0)] |
|
47 |
+
| feature_extraction__verbose | False |
|
48 |
+
| feature_extraction__verbose_feature_names_out | True |
|
49 |
+
| feature_extraction__abbreviations | <__main__.ELFAbbreviationTransformer object at 0x7f38e5329160> |
|
50 |
+
| feature_extraction__tokenizer | CountVectorizer(binary=True, lowercase=False,<br /> tokenizer=<function tokenize at 0x7f38e46cb700>) |
|
51 |
+
| feature_extraction__abbreviations__elf_abbreviations | <__main__.ELFAbbreviations object at 0x7f38ebe22be0> |
|
52 |
+
| feature_extraction__abbreviations__jurisdiction | PL |
|
53 |
+
| feature_extraction__abbreviations__use_endswith | True |
|
54 |
+
| feature_extraction__abbreviations__use_lowercasing | True |
|
55 |
+
| feature_extraction__tokenizer__analyzer | word |
|
56 |
+
| feature_extraction__tokenizer__binary | True |
|
57 |
+
| feature_extraction__tokenizer__decode_error | strict |
|
58 |
+
| feature_extraction__tokenizer__dtype | <class 'numpy.int64'> |
|
59 |
+
| feature_extraction__tokenizer__encoding | utf-8 |
|
60 |
+
| feature_extraction__tokenizer__input | content |
|
61 |
+
| feature_extraction__tokenizer__lowercase | False |
|
62 |
+
| feature_extraction__tokenizer__max_df | 1.0 |
|
63 |
+
| feature_extraction__tokenizer__max_features | |
|
64 |
+
| feature_extraction__tokenizer__min_df | 1 |
|
65 |
+
| feature_extraction__tokenizer__ngram_range | (1, 1) |
|
66 |
+
| feature_extraction__tokenizer__preprocessor | |
|
67 |
+
| feature_extraction__tokenizer__stop_words | |
|
68 |
+
| feature_extraction__tokenizer__strip_accents | |
|
69 |
+
| feature_extraction__tokenizer__token_pattern | (?u)\b\w\w+\b |
|
70 |
+
| feature_extraction__tokenizer__tokenizer | <function tokenize at 0x7f38e46cb700> |
|
71 |
+
| feature_extraction__tokenizer__vocabulary | |
|
72 |
+
| classifier__alpha | 1.0 |
|
73 |
+
| classifier__class_prior | |
|
74 |
+
| classifier__fit_prior | True |
|
75 |
+
| classifier__norm | False |
|
76 |
+
|
77 |
+
</details>
|
78 |
+
|
79 |
+
### Model Plot
|
80 |
+
|
81 |
+
The model plot is below.
|
82 |
+
|
83 |
+
<style>#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b {color: black;background-color: white;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b pre{padding: 0;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-toggleable {background-color: white;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-estimator:hover {background-color: #d4ebff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-item {z-index: 1;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-parallel-item:only-child::after {width: 0;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b div.sk-text-repr-fallback {display: none;}</style><div id="sk-f2c1bf91-a172-421a-80a6-a1cc1e6bfd1b" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('feature_extraction',ColumnTransformer(transformers=[('abbreviations',<__main__.ELFAbbreviationTransformer object at 0x7f38e5329160>,0),('tokenizer',CountVectorizer(binary=True,lowercase=False,tokenizer=<function tokenize at 0x7f38e46cb700>),0)])),('classifier', ComplementNB())])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="6c657019-d3cc-4bd2-acbf-c35e96ec9647" type="checkbox" ><label for="6c657019-d3cc-4bd2-acbf-c35e96ec9647" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('feature_extraction',ColumnTransformer(transformers=[('abbreviations',<__main__.ELFAbbreviationTransformer object at 0x7f38e5329160>,0),('tokenizer',CountVectorizer(binary=True,lowercase=False,tokenizer=<function tokenize at 0x7f38e46cb700>),0)])),('classifier', ComplementNB())])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="008a36e9-520c-4037-85bc-861bce722ea9" type="checkbox" ><label for="008a36e9-520c-4037-85bc-861bce722ea9" class="sk-toggleable__label sk-toggleable__label-arrow">feature_extraction: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[('abbreviations',<__main__.ELFAbbreviationTransformer object at 0x7f38e5329160>,0),('tokenizer',CountVectorizer(binary=True, lowercase=False,tokenizer=<function tokenize at 0x7f38e46cb700>),0)])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="fc8382d0-2ecc-4ffe-9551-4fd3f22ab155" type="checkbox" ><label for="fc8382d0-2ecc-4ffe-9551-4fd3f22ab155" class="sk-toggleable__label sk-toggleable__label-arrow">abbreviations</label><div class="sk-toggleable__content"><pre>0</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ae011248-bf0c-4a79-a2d0-2816108a637c" type="checkbox" ><label for="ae011248-bf0c-4a79-a2d0-2816108a637c" class="sk-toggleable__label sk-toggleable__label-arrow">ELFAbbreviationTransformer</label><div class="sk-toggleable__content"><pre><__main__.ELFAbbreviationTransformer object at 0x7f38e5329160></pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="bdd4bd27-45c9-466f-93a2-63d412751505" type="checkbox" ><label for="bdd4bd27-45c9-466f-93a2-63d412751505" class="sk-toggleable__label sk-toggleable__label-arrow">tokenizer</label><div class="sk-toggleable__content"><pre>0</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="1a132d4a-141d-4f64-a7a1-5e2de5a882ec" type="checkbox" ><label for="1a132d4a-141d-4f64-a7a1-5e2de5a882ec" class="sk-toggleable__label sk-toggleable__label-arrow">CountVectorizer</label><div class="sk-toggleable__content"><pre>CountVectorizer(binary=True, lowercase=False,tokenizer=<function tokenize at 0x7f38e46cb700>)</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="d8b42ef3-dbfe-4f5b-a6b9-a09031f4b76c" type="checkbox" ><label for="d8b42ef3-dbfe-4f5b-a6b9-a09031f4b76c" class="sk-toggleable__label sk-toggleable__label-arrow">ComplementNB</label><div class="sk-toggleable__content"><pre>ComplementNB()</pre></div></div></div></div></div></div></div>
|
84 |
+
|
85 |
+
## Evaluation Results
|
86 |
+
|
87 |
+
You can find the details about evaluation process and the evaluation results.
|
88 |
+
|
89 |
+
| Metric | Value |
|
90 |
+
|----------|----------|
|
91 |
+
| f1 | 0.971647 |
|
92 |
+
| f1 macro | 0.522164 |
|
93 |
+
|
94 |
+
# How to Get Started with the Model
|
95 |
+
|
96 |
+
[More Information Needed]
|
97 |
+
|
98 |
+
# Model Card Authors
|
99 |
+
|
100 |
+
This model card is written by following authors:
|
101 |
+
|
102 |
+
[More Information Needed]
|
103 |
+
|
104 |
+
# Model Card Contact
|
105 |
+
|
106 |
+
You can contact the model card authors through following channels:
|
107 |
+
[More Information Needed]
|
108 |
+
|
109 |
+
# Citation
|
110 |
+
|
111 |
+
Below you can find information related to citation.
|
112 |
+
|
113 |
+
**BibTeX:**
|
114 |
+
```
|
115 |
+
[More Information Needed]
|
116 |
+
```
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"LegalName"
|
5 |
+
],
|
6 |
+
"environment": [
|
7 |
+
"scikit-learn=1.0.2",
|
8 |
+
"joblib=1.2.0",
|
9 |
+
"pandas=1.3.5"
|
10 |
+
],
|
11 |
+
"example_input": {
|
12 |
+
"LegalName": [
|
13 |
+
"United Partners Sp. z o.o.",
|
14 |
+
"RAFA\u0141 SZYMA\u0143SKI : IMPORT- EXPORT \"RAFAEL\"; STUDIO TA\u0143CA \"PASJA\" ,RAFAEL LOGISTICS, VILLA LUANDA",
|
15 |
+
"Fabryka Pier\u015bcieni T\u0142okowych \"Prima\" S.A. w \u0141odzi"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
"model": {
|
19 |
+
"file": "model.joblib"
|
20 |
+
},
|
21 |
+
"model_format": "pickle",
|
22 |
+
"task": "tabular-classification",
|
23 |
+
"use_intelex": false
|
24 |
+
}
|
25 |
+
}
|
model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfdd13517f6b615f898eeef17f64d966147e5d6af553e2d7f0c194526f6e0209
|
3 |
+
size 10283757
|