Snowkcon's picture
Model save
9962677 verified
metadata
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: bge_large_cn_new_prompt_llama3_70
    results: []

bge_large_cn_new_prompt_llama3_70

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9517
  • Precision: 0.4483
  • Recall: 0.3656
  • F1 Macro: 0.3577
  • Accuracy: 0.4617

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 256
  • eval_batch_size: 128
  • seed: 0
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Macro Accuracy
No log 0 0 10.4077 0.1217 0.1667 0.0201 0.0638
1.01 0.3672 1000 1.0195 0.4334 0.3321 0.3218 0.4338
1.0013 0.7345 2000 0.9928 0.4524 0.3418 0.3300 0.4429
0.9922 1.1017 3000 0.9758 0.4591 0.3556 0.3460 0.4574
0.9353 1.4690 4000 0.9716 0.4607 0.3557 0.3431 0.4597
0.9501 1.8362 5000 0.9638 0.4765 0.3546 0.3402 0.4627
0.9574 2.2035 6000 0.9628 0.4630 0.3502 0.3320 0.4527
0.9324 2.5707 7000 0.9755 0.4565 0.3592 0.3448 0.4471
0.9373 2.9379 8000 0.9504 0.4749 0.3635 0.3503 0.4694
0.9303 3.3052 9000 0.9510 0.4809 0.3638 0.3516 0.4702
0.9453 3.6724 10000 0.9519 0.4622 0.3619 0.3472 0.4588
0.9278 4.0397 11000 0.9469 0.4678 0.3604 0.3453 0.4591
0.9246 4.4069 12000 0.9440 0.4731 0.3634 0.3476 0.4628
0.9229 4.7741 13000 0.9423 0.4778 0.3666 0.3539 0.4704
0.9105 5.1414 14000 0.9388 0.4717 0.3655 0.3511 0.4647
0.8994 5.5086 15000 0.9471 0.4807 0.3638 0.3517 0.4707
0.9138 5.8759 16000 0.9412 0.4768 0.3620 0.3489 0.4692
0.9157 6.2431 17000 0.9393 0.4703 0.3638 0.3495 0.4631
0.9074 6.6104 18000 0.9372 0.4699 0.3676 0.3553 0.4679
0.9048 6.9776 19000 0.9378 0.4671 0.3688 0.3575 0.4690
0.8827 7.3448 20000 0.9421 0.4603 0.3673 0.3550 0.4628
0.888 7.7121 21000 0.9384 0.4632 0.3675 0.3584 0.4655
0.8701 8.0793 22000 0.9449 0.4617 0.3665 0.3535 0.4614
0.8808 8.4466 23000 0.9382 0.4595 0.3642 0.3517 0.4668
0.901 8.8138 24000 0.9436 0.4693 0.3654 0.3554 0.4682
0.8729 9.1811 25000 0.9459 0.4624 0.3625 0.3483 0.4580
0.8798 9.5483 26000 0.9459 0.4546 0.3665 0.3541 0.4581
0.8745 9.9155 27000 0.9518 0.4633 0.3688 0.3623 0.4700
0.8484 10.2828 28000 0.9426 0.4568 0.3655 0.3543 0.4623
0.8654 10.6500 29000 0.9448 0.4689 0.3659 0.3560 0.4680
0.8543 11.0173 30000 0.9421 0.4614 0.3625 0.3507 0.4645
0.8446 11.3845 31000 0.9451 0.4600 0.3684 0.3606 0.4671
0.8589 11.7517 32000 0.9414 0.4597 0.3672 0.3578 0.4644
0.8201 12.1190 33000 0.9469 0.4568 0.3641 0.3533 0.4587
0.8303 12.4862 34000 0.9527 0.4603 0.3652 0.3578 0.4663
0.8391 12.8535 35000 0.9466 0.4568 0.3647 0.3532 0.4601
0.8393 13.2207 36000 0.9489 0.4518 0.3612 0.3488 0.4555
0.8388 13.5880 37000 0.9463 0.4575 0.3639 0.3536 0.4628
0.8396 13.9552 38000 0.9466 0.4554 0.3663 0.3557 0.4635
0.8296 14.3224 39000 0.9488 0.4555 0.3665 0.3575 0.4661
0.8351 14.6897 40000 0.9500 0.4523 0.3675 0.3610 0.4635
0.8362 15.0569 41000 0.9500 0.4585 0.3645 0.3559 0.4637
0.8174 15.4242 42000 0.9510 0.4547 0.3700 0.3634 0.4646
0.8249 15.7914 43000 0.9541 0.4513 0.3670 0.3605 0.4642
0.8057 16.1586 44000 0.9504 0.4519 0.3646 0.3562 0.4604
0.8145 16.5259 45000 0.9539 0.4537 0.3667 0.3595 0.4641
0.8237 16.8931 46000 0.9515 0.4524 0.3662 0.3582 0.4622
0.8082 17.2604 47000 0.9515 0.4484 0.3646 0.3547 0.4588
0.8249 17.6276 48000 0.9512 0.4488 0.3651 0.3573 0.4608
0.8074 17.9949 49000 0.9507 0.4498 0.3662 0.3584 0.4610
0.7944 18.3621 50000 0.9512 0.4516 0.3649 0.3554 0.4605
0.8041 18.7293 51000 0.9520 0.4515 0.3660 0.3581 0.4623
0.7958 19.0966 52000 0.9528 0.4497 0.3651 0.3574 0.4617
0.8173 19.4638 53000 0.9518 0.4511 0.3644 0.3558 0.4615
0.7909 19.8311 54000 0.9517 0.4483 0.3656 0.3577 0.4617

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1