snowflake-arctic-instruct / configuration_arctic.py
tomaarsen's picture
tomaarsen HF staff
Add Arctic modeling/config/tokenization files
2af13d2 verified
raw
history blame
9.46 kB
# Copyright 2023 Snowflake AI and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Arctic model configuration"""
from dataclasses import asdict, dataclass
from typing import Any, Dict
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
ARCTIC_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"arctic": "https://huggingface.co/Snowflake/snowflake-arctic-instruct/tree/main/config.json",
}
@dataclass
class ArcticLoraConfig:
lora_r: int = 64
lora_alpha: float = 16
shard_base_weights: bool = False
@dataclass
class ArcticQuantizationConfig:
q_bits: int = 8
rounding: str = "nearest"
mantissa_bits: int = 3
group_size: int = 512
class ArcticConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ArcticModel`]. It is used to instantiate an
Arctic model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the #TODO(rsamdani): add what model has the default config..
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Arctic model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`ArcticModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 14336):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
The maximum sequence length that this model might ever be used with. Arctic's sliding window attention
allows sequence of up to 4096*32 tokens.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 1000000.0):
The base period of the RoPE embeddings.
sliding_window (`int`, *optional*):
Sliding window attention window size. If not specified, will default to `4096`.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
num_experts_per_tok (`int`, *optional*, defaults to 2):
The number of experts to root per-token, can be also interpreted as the `top-p` routing
parameter
num_local_experts (`int`, *optional*, defaults to 8):
Number of experts per Sparse MLP layer.
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
The aux loss factor for the total loss.
```python
>>> from transformers import ArcticModel, ArcticConfig
>>> # Initializing a Arctic 7B style configuration TODO(rsamdani): verify which model does the default configuration correspond to.
>>> configuration = ArcticConfig()
>>> # Initializing a model from the Arctic 7B style configuration
>>> model = ArcticModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "arctic"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=14336,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=4096,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=1e6,
sliding_window=None,
attention_dropout=0.0,
num_experts_per_tok=1,
num_local_experts=8,
router_aux_loss_coef=0.001,
moe_layer_frequency=2,
parallel_attn_mlp_res=False,
moe_train_capacity_factor=1,
moe_eval_capacity_factor=1,
enable_expert_tensor_parallelism=False,
moe_min_capacity=0,
moe_token_dropping=True,
quantization=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.sliding_window = sliding_window
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
self.num_experts_per_tok = num_experts_per_tok
self.num_local_experts = num_local_experts
self.router_aux_loss_coef = router_aux_loss_coef
self.moe_layer_frequency = moe_layer_frequency
self.moe_train_capacity_factor = moe_train_capacity_factor
self.moe_eval_capacity_factor = moe_eval_capacity_factor
self.enable_expert_tensor_parallelism = enable_expert_tensor_parallelism
self.moe_min_capacity = moe_min_capacity
self.moe_token_dropping = moe_token_dropping
self.parallel_attn_mlp_res = parallel_attn_mlp_res
if isinstance(quantization, dict):
self.quantization = ArcticQuantizationConfig(**quantization)
else:
self.quantization = quantization
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
@classmethod
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "ArcticConfig":
result = super().from_dict(config_dict, **kwargs)
if isinstance(result, tuple):
config = result[0]
else:
config = result
if isinstance(config.quantization, dict):
config.quantization = ArcticQuantizationConfig(**config.quantization)
return result
def to_dict(self) -> Dict[str, Any]:
ret = super().to_dict()
if isinstance(ret["quantization"], ArcticQuantizationConfig):
ret["quantization"] = asdict(ret["quantization"])
return ret