results / README.md
SneakyLemon's picture
SneakyLemon/Llama3LoraCauseEffect
783947d verified
|
raw
history blame
2.64 kB
---
license: llama3
base_model: meta-llama/Meta-Llama-3-8B
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4487
- F1: 0.8063
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 35
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.8917 | 0.1368 | 16 | 0.9228 | 0.5606 |
| 0.8219 | 0.2735 | 32 | 0.7617 | 0.6112 |
| 0.7154 | 0.4103 | 48 | 0.6455 | 0.6687 |
| 0.6278 | 0.5470 | 64 | 0.5976 | 0.6955 |
| 0.5923 | 0.6838 | 80 | 0.5443 | 0.7327 |
| 0.5417 | 0.8205 | 96 | 0.5212 | 0.7479 |
| 0.5094 | 0.9573 | 112 | 0.5087 | 0.7586 |
| 0.4866 | 1.0940 | 128 | 0.4835 | 0.7719 |
| 0.4743 | 1.2308 | 144 | 0.5172 | 0.7609 |
| 0.4887 | 1.3675 | 160 | 0.4905 | 0.7718 |
| 0.452 | 1.5043 | 176 | 0.4706 | 0.7817 |
| 0.4592 | 1.6410 | 192 | 0.4658 | 0.7795 |
| 0.4372 | 1.7778 | 208 | 0.4726 | 0.7782 |
| 0.4387 | 1.9145 | 224 | 0.4769 | 0.7775 |
| 0.4242 | 2.0513 | 240 | 0.4526 | 0.7929 |
| 0.3881 | 2.1880 | 256 | 0.4541 | 0.7975 |
| 0.4081 | 2.3248 | 272 | 0.4524 | 0.8002 |
| 0.3768 | 2.4615 | 288 | 0.4609 | 0.7931 |
| 0.3838 | 2.5983 | 304 | 0.4511 | 0.8037 |
| 0.3888 | 2.7350 | 320 | 0.4483 | 0.8011 |
| 0.3791 | 2.8718 | 336 | 0.4487 | 0.8063 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1