Text Generation
Transformers
PyTorch
skywork
custom_code
liang.zhao commited on
Commit
78c9bf5
1 Parent(s): 5e543ab

update model and config

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. config.json +27 -0
  2. configuration_skywork.py +76 -0
  3. generation_config.json +10 -0
  4. modeling_skywork.py +1111 -0
  5. pytorch_model-00001-of-00053.bin +3 -0
  6. pytorch_model-00002-of-00053.bin +3 -0
  7. pytorch_model-00003-of-00053.bin +3 -0
  8. pytorch_model-00004-of-00053.bin +3 -0
  9. pytorch_model-00005-of-00053.bin +3 -0
  10. pytorch_model-00006-of-00053.bin +3 -0
  11. pytorch_model-00007-of-00053.bin +3 -0
  12. pytorch_model-00008-of-00053.bin +3 -0
  13. pytorch_model-00009-of-00053.bin +3 -0
  14. pytorch_model-00010-of-00053.bin +3 -0
  15. pytorch_model-00011-of-00053.bin +3 -0
  16. pytorch_model-00012-of-00053.bin +3 -0
  17. pytorch_model-00013-of-00053.bin +3 -0
  18. pytorch_model-00014-of-00053.bin +3 -0
  19. pytorch_model-00015-of-00053.bin +3 -0
  20. pytorch_model-00016-of-00053.bin +3 -0
  21. pytorch_model-00017-of-00053.bin +3 -0
  22. pytorch_model-00018-of-00053.bin +3 -0
  23. pytorch_model-00019-of-00053.bin +3 -0
  24. pytorch_model-00020-of-00053.bin +3 -0
  25. pytorch_model-00021-of-00053.bin +3 -0
  26. pytorch_model-00022-of-00053.bin +3 -0
  27. pytorch_model-00023-of-00053.bin +3 -0
  28. pytorch_model-00024-of-00053.bin +3 -0
  29. pytorch_model-00025-of-00053.bin +3 -0
  30. pytorch_model-00026-of-00053.bin +3 -0
  31. pytorch_model-00027-of-00053.bin +3 -0
  32. pytorch_model-00028-of-00053.bin +3 -0
  33. pytorch_model-00029-of-00053.bin +3 -0
  34. pytorch_model-00030-of-00053.bin +3 -0
  35. pytorch_model-00031-of-00053.bin +3 -0
  36. pytorch_model-00032-of-00053.bin +3 -0
  37. pytorch_model-00033-of-00053.bin +3 -0
  38. pytorch_model-00034-of-00053.bin +3 -0
  39. pytorch_model-00035-of-00053.bin +3 -0
  40. pytorch_model-00036-of-00053.bin +3 -0
  41. pytorch_model-00037-of-00053.bin +3 -0
  42. pytorch_model-00038-of-00053.bin +3 -0
  43. pytorch_model-00039-of-00053.bin +3 -0
  44. pytorch_model-00040-of-00053.bin +3 -0
  45. pytorch_model-00041-of-00053.bin +3 -0
  46. pytorch_model-00042-of-00053.bin +3 -0
  47. pytorch_model-00043-of-00053.bin +3 -0
  48. pytorch_model-00044-of-00053.bin +3 -0
  49. pytorch_model-00045-of-00053.bin +3 -0
  50. pytorch_model-00046-of-00053.bin +3 -0
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SkyworkForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_skywork.SkyworkConfig",
7
+ "AutoModelForCausalLM": "modeling_skywork.SkyworkForCausalLM"
8
+ },
9
+ "bos_token_id": 1,
10
+ "eos_token_id": 2,
11
+ "pad_token_id": 0,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4608,
14
+ "initializer_range": 0.01,
15
+ "intermediate_size": 12288,
16
+ "max_position_embeddings": 4096,
17
+ "model_type": "skywork",
18
+ "num_attention_heads": 36,
19
+ "num_hidden_layers": 52,
20
+ "num_key_value_heads": 36,
21
+ "rms_norm_eps": 1e-06,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.33.1",
25
+ "use_cache": true,
26
+ "vocab_size": 65519
27
+ }
configuration_skywork.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SkyworkAI and the HuggingFace Inc. team. All rights reserved.
2
+ # This code is built upon Huggingface's transformers repository.
3
+
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.utils import logging
6
+
7
+
8
+ logger = logging.get_logger(__name__)
9
+
10
+ Skywork_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
11
+
12
+
13
+ class SkyworkConfig(PretrainedConfig):
14
+
15
+ model_type = "skywork"
16
+ keys_to_ignore_at_inference = ["past_key_values"]
17
+
18
+ def __init__(
19
+ self,
20
+ vocab_size=32000,
21
+ hidden_size=4096,
22
+ intermediate_size=11008,
23
+ num_hidden_layers=32,
24
+ num_attention_heads=32,
25
+ num_key_value_heads=None,
26
+ hidden_act="silu",
27
+ max_position_embeddings=2048,
28
+ initializer_range=0.02,
29
+ rms_norm_eps=1e-6,
30
+ use_cache=True,
31
+ pad_token_id=0,
32
+ bos_token_id=1,
33
+ eos_token_id=2,
34
+ pretraining_tp=1,
35
+ tie_word_embeddings=False,
36
+ rope_scaling=None,
37
+ rope_theta=10000.0,
38
+ attention_bias=False,
39
+ use_flash_attention=False,
40
+ **kwargs,
41
+ ):
42
+ self.vocab_size = vocab_size
43
+ self.max_position_embeddings = max_position_embeddings
44
+ self.hidden_size = hidden_size
45
+ self.intermediate_size = intermediate_size
46
+ self.num_hidden_layers = num_hidden_layers
47
+ self.num_attention_heads = num_attention_heads
48
+
49
+ # for backward compatibility
50
+ if num_key_value_heads is None:
51
+ num_key_value_heads = num_attention_heads
52
+
53
+ self.num_key_value_heads = num_key_value_heads
54
+ self.hidden_act = hidden_act
55
+ self.initializer_range = initializer_range
56
+ self.rms_norm_eps = rms_norm_eps
57
+ self.pretraining_tp = pretraining_tp
58
+ self.use_cache = use_cache
59
+ self.rope_scaling = rope_scaling
60
+ self.rope_theta = rope_theta
61
+ self.attention_bias = attention_bias
62
+ self.use_flash_attention = use_flash_attention
63
+ if self.use_flash_attention:
64
+ try:
65
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func
66
+ from einops import rearrange
67
+ except:
68
+ raise ValueError("`use_flash_attention` requires Flash Attention 2+ and einops.\nTry `pip install einops` and installing Flash Attention from from https://github.com/Dao-AILab/flash-attention")
69
+
70
+ super().__init__(
71
+ pad_token_id=pad_token_id,
72
+ bos_token_id=bos_token_id,
73
+ eos_token_id=eos_token_id,
74
+ tie_word_embeddings=tie_word_embeddings,
75
+ **kwargs,
76
+ )
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.34.0"
10
+ }
modeling_skywork.py ADDED
@@ -0,0 +1,1111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SkyworkAI and the HuggingFace Inc. team. All rights reserved.
2
+ # This code is built upon Huggingface's transformers repository.
3
+ import math
4
+ from typing import List, Optional, Tuple, Union
5
+
6
+ import torch
7
+ import torch.nn.functional as F
8
+ import torch.utils.checkpoint
9
+ from torch import nn
10
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
11
+
12
+ from transformers.activations import ACT2FN
13
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
14
+ from transformers.modeling_utils import PreTrainedModel
15
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
16
+ from transformers.utils import (
17
+ add_start_docstrings,
18
+ add_start_docstrings_to_model_forward,
19
+ is_flash_attn_available,
20
+ logging,
21
+ replace_return_docstrings,
22
+ )
23
+ from .configuration_skywork import SkyworkConfig
24
+
25
+
26
+ if is_flash_attn_available():
27
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
28
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
29
+
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+ _CONFIG_FOR_DOC = "SkyworkConfig"
34
+
35
+
36
+ def _get_unpad_data(padding_mask):
37
+ seqlens_in_batch = padding_mask.sum(dim=-1, dtype=torch.int32)
38
+ indices = torch.nonzero(padding_mask.flatten(), as_tuple=False).flatten()
39
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
40
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
41
+ return (
42
+ indices,
43
+ cu_seqlens,
44
+ max_seqlen_in_batch,
45
+ )
46
+
47
+
48
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
49
+ def _make_causal_mask(
50
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
51
+ ):
52
+ """
53
+ Make causal mask used for bi-directional self-attention.
54
+ """
55
+ bsz, tgt_len = input_ids_shape
56
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
57
+ mask_cond = torch.arange(mask.size(-1), device=device)
58
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
59
+ mask = mask.to(dtype)
60
+
61
+ if past_key_values_length > 0:
62
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
63
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
64
+
65
+
66
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
67
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
68
+ """
69
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
70
+ """
71
+ bsz, src_len = mask.size()
72
+ tgt_len = tgt_len if tgt_len is not None else src_len
73
+
74
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
75
+
76
+ inverted_mask = 1.0 - expanded_mask
77
+
78
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
79
+
80
+
81
+ class SkyworkRMSNorm(nn.Module):
82
+ def __init__(self, hidden_size, eps=1e-6):
83
+ """
84
+ SkyworkRMSNorm is equivalent to T5LayerNorm
85
+ """
86
+ super().__init__()
87
+ self.weight = nn.Parameter(torch.ones(hidden_size))
88
+ self.variance_epsilon = eps
89
+
90
+ def forward(self, hidden_states):
91
+ input_dtype = hidden_states.dtype
92
+ hidden_states = hidden_states.to(torch.float32)
93
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
94
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
95
+ return self.weight * hidden_states.to(input_dtype)
96
+
97
+
98
+ ALL_LAYERNORM_LAYERS.append(SkyworkRMSNorm)
99
+
100
+
101
+ class SkyworkRotaryEmbedding(nn.Module):
102
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
103
+ super().__init__()
104
+
105
+ self.dim = dim
106
+ self.max_position_embeddings = max_position_embeddings
107
+ self.base = base
108
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
109
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
110
+
111
+ # Build here to make `torch.jit.trace` work.
112
+ self._set_cos_sin_cache(
113
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
114
+ )
115
+
116
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
117
+ self.max_seq_len_cached = seq_len
118
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
119
+
120
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
121
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
122
+ emb = torch.cat((freqs, freqs), dim=-1)
123
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
124
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
125
+
126
+ def forward(self, x, seq_len=None):
127
+ # x: [bs, num_attention_heads, seq_len, head_size]
128
+ if seq_len > self.max_seq_len_cached:
129
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
130
+
131
+ return (
132
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
133
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
134
+ )
135
+
136
+
137
+ class SkyworkLinearScalingRotaryEmbedding(SkyworkRotaryEmbedding):
138
+ """SkyworkRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
139
+
140
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
141
+ self.scaling_factor = scaling_factor
142
+ super().__init__(dim, max_position_embeddings, base, device)
143
+
144
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
145
+ self.max_seq_len_cached = seq_len
146
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
147
+ t = t / self.scaling_factor
148
+
149
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
150
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
151
+ emb = torch.cat((freqs, freqs), dim=-1)
152
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
153
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
154
+
155
+
156
+ class SkyworkDynamicNTKScalingRotaryEmbedding(SkyworkRotaryEmbedding):
157
+ """SkyworkRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
158
+
159
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
160
+ self.scaling_factor = scaling_factor
161
+ super().__init__(dim, max_position_embeddings, base, device)
162
+
163
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
164
+ self.max_seq_len_cached = seq_len
165
+
166
+ if seq_len > self.max_position_embeddings:
167
+ base = self.base * (
168
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
169
+ ) ** (self.dim / (self.dim - 2))
170
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
171
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
172
+
173
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
174
+
175
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
176
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
177
+ emb = torch.cat((freqs, freqs), dim=-1)
178
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
179
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
180
+
181
+
182
+ def rotate_half(x):
183
+ """Rotates half the hidden dims of the input."""
184
+ x1 = x[..., : x.shape[-1] // 2]
185
+ x2 = x[..., x.shape[-1] // 2 :]
186
+ return torch.cat((-x2, x1), dim=-1)
187
+
188
+
189
+ # Copied from transformers.models.gpt_neox.modeling_gpt_neox.apply_rotary_pos_emb
190
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
191
+ cos = cos[position_ids].unsqueeze(1) # [seq_len, dim] -> [batch_size, 1, seq_len, head_dim]
192
+ sin = sin[position_ids].unsqueeze(1)
193
+ q_embed = (q * cos) + (rotate_half(q) * sin)
194
+ k_embed = (k * cos) + (rotate_half(k) * sin)
195
+ return q_embed, k_embed
196
+
197
+
198
+ class SkyworkMLP(nn.Module):
199
+ def __init__(self, config):
200
+ super().__init__()
201
+ self.config = config
202
+ self.hidden_size = config.hidden_size
203
+ self.intermediate_size = config.intermediate_size
204
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
205
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
206
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
207
+ self.act_fn = ACT2FN[config.hidden_act]
208
+
209
+ def forward(self, x):
210
+ if self.config.pretraining_tp > 1:
211
+ slice = self.intermediate_size // self.config.pretraining_tp
212
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
213
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
214
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
215
+
216
+ gate_proj = torch.cat(
217
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
218
+ )
219
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
220
+
221
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
222
+ down_proj = [
223
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
224
+ ]
225
+ down_proj = sum(down_proj)
226
+ else:
227
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
228
+
229
+ return down_proj
230
+
231
+
232
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
233
+ """
234
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
235
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
236
+ """
237
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
238
+ if n_rep == 1:
239
+ return hidden_states
240
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
241
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
242
+
243
+
244
+ class SkyworkAttention(nn.Module):
245
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
246
+
247
+ def __init__(self, config: SkyworkConfig):
248
+ super().__init__()
249
+ self.config = config
250
+ self.hidden_size = config.hidden_size
251
+ self.num_heads = config.num_attention_heads
252
+ self.head_dim = self.hidden_size // self.num_heads
253
+ self.num_key_value_heads = config.num_key_value_heads
254
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
255
+ self.max_position_embeddings = config.max_position_embeddings
256
+ self.rope_theta = config.rope_theta
257
+
258
+ if (self.head_dim * self.num_heads) != self.hidden_size:
259
+ raise ValueError(
260
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
261
+ f" and `num_heads`: {self.num_heads})."
262
+ )
263
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
264
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
265
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
266
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
267
+ self._init_rope()
268
+
269
+ def _init_rope(self):
270
+ if self.config.rope_scaling is None:
271
+ self.rotary_emb = SkyworkRotaryEmbedding(
272
+ self.head_dim,
273
+ max_position_embeddings=self.max_position_embeddings,
274
+ base=self.rope_theta,
275
+ )
276
+ else:
277
+ scaling_type = self.config.rope_scaling["type"]
278
+ scaling_factor = self.config.rope_scaling["factor"]
279
+ if scaling_type == "linear":
280
+ self.rotary_emb = SkyworkLinearScalingRotaryEmbedding(
281
+ self.head_dim,
282
+ max_position_embeddings=self.max_position_embeddings,
283
+ scaling_factor=scaling_factor,
284
+ base=self.rope_theta,
285
+ )
286
+ elif scaling_type == "dynamic":
287
+ self.rotary_emb = SkyworkDynamicNTKScalingRotaryEmbedding(
288
+ self.head_dim,
289
+ max_position_embeddings=self.max_position_embeddings,
290
+ scaling_factor=scaling_factor,
291
+ base=self.rope_theta,
292
+ )
293
+ else:
294
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
295
+
296
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
297
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
298
+
299
+ def forward(
300
+ self,
301
+ hidden_states: torch.Tensor,
302
+ attention_mask: Optional[torch.Tensor] = None,
303
+ position_ids: Optional[torch.LongTensor] = None,
304
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
305
+ output_attentions: bool = False,
306
+ use_cache: bool = False,
307
+ padding_mask: Optional[torch.LongTensor] = None,
308
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
309
+ bsz, q_len, _ = hidden_states.size()
310
+
311
+ if self.config.pretraining_tp > 1:
312
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
313
+ query_slices = self.q_proj.weight.split(
314
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
315
+ )
316
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
317
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
318
+
319
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
320
+ query_states = torch.cat(query_states, dim=-1)
321
+
322
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
323
+ key_states = torch.cat(key_states, dim=-1)
324
+
325
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
326
+ value_states = torch.cat(value_states, dim=-1)
327
+
328
+ else:
329
+ query_states = self.q_proj(hidden_states)
330
+ key_states = self.k_proj(hidden_states)
331
+ value_states = self.v_proj(hidden_states)
332
+
333
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
334
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
335
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
336
+
337
+ kv_seq_len = key_states.shape[-2]
338
+ if past_key_value is not None:
339
+ kv_seq_len += past_key_value[0].shape[-2]
340
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
341
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
342
+
343
+ if past_key_value is not None:
344
+ # reuse k, v, self_attention
345
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
346
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
347
+
348
+ past_key_value = (key_states, value_states) if use_cache else None
349
+
350
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
351
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
352
+
353
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
354
+
355
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
356
+ raise ValueError(
357
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
358
+ f" {attn_weights.size()}"
359
+ )
360
+
361
+ if attention_mask is not None:
362
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
363
+ raise ValueError(
364
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
365
+ )
366
+ attn_weights = attn_weights + attention_mask
367
+
368
+ # upcast attention to fp32
369
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
370
+ attn_output = torch.matmul(attn_weights, value_states)
371
+
372
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
373
+ raise ValueError(
374
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
375
+ f" {attn_output.size()}"
376
+ )
377
+
378
+ attn_output = attn_output.transpose(1, 2).contiguous()
379
+
380
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
381
+
382
+ if self.config.pretraining_tp > 1:
383
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
384
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
385
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
386
+ else:
387
+ attn_output = self.o_proj(attn_output)
388
+
389
+ if not output_attentions:
390
+ attn_weights = None
391
+
392
+ return attn_output, attn_weights, past_key_value
393
+
394
+
395
+ class SkyworkFlashAttention2(SkyworkAttention):
396
+ """
397
+ Skywork flash attention module. This module inherits from `SkyworkAttention` as the weights of the module stays
398
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
399
+ flash attention and deal with padding tokens in case the input contains any of them.
400
+ """
401
+
402
+ def forward(
403
+ self,
404
+ hidden_states: torch.Tensor,
405
+ attention_mask: Optional[torch.Tensor] = None,
406
+ position_ids: Optional[torch.LongTensor] = None,
407
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
408
+ output_attentions: bool = False,
409
+ use_cache: bool = False,
410
+ padding_mask: Optional[torch.LongTensor] = None,
411
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
412
+ # SkyworkFlashAttention2 attention does not support output_attentions
413
+ output_attentions = False
414
+
415
+ bsz, q_len, _ = hidden_states.size()
416
+
417
+ query_states = self.q_proj(hidden_states)
418
+ key_states = self.k_proj(hidden_states)
419
+ value_states = self.v_proj(hidden_states)
420
+
421
+ # Flash attention requires the input to have the shape
422
+ # batch_size x seq_length x head_dime x hidden_dim
423
+ # therefore we just need to keep the original shape
424
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
425
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
426
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
427
+
428
+ kv_seq_len = key_states.shape[-2]
429
+ if past_key_value is not None:
430
+ kv_seq_len += past_key_value[0].shape[-2]
431
+
432
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
433
+
434
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
435
+
436
+ if past_key_value is not None:
437
+ # reuse k, v, self_attention
438
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
439
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
440
+
441
+ past_key_value = (key_states, value_states) if use_cache else None
442
+
443
+ query_states = query_states.transpose(1, 2)
444
+ key_states = key_states.transpose(1, 2)
445
+ value_states = value_states.transpose(1, 2)
446
+
447
+ # TODO: skywork does not have dropout in the config??
448
+ # It is recommended to use dropout with FA according to the docs
449
+ # when training.
450
+ dropout_rate = 0.0 # if not self.training else self.attn_dropout
451
+
452
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
453
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
454
+ # cast them back in float16 just to be sure everything works as expected.
455
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
456
+ # in fp32. (SkyworkRMSNorm handles it correctly)
457
+ input_dtype = query_states.dtype
458
+ if input_dtype == torch.float32:
459
+ logger.warning_once(
460
+ "The input hidden states seems to be silently casted in float32, this might be related to"
461
+ " the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
462
+ " float16."
463
+ )
464
+
465
+ query_states = query_states.to(torch.float16)
466
+ key_states = key_states.to(torch.float16)
467
+ value_states = value_states.to(torch.float16)
468
+
469
+ attn_output = self._flash_attention_forward(
470
+ query_states, key_states, value_states, padding_mask, q_len, dropout=dropout_rate
471
+ )
472
+
473
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
474
+ attn_output = self.o_proj(attn_output)
475
+
476
+ if not output_attentions:
477
+ attn_weights = None
478
+
479
+ return attn_output, attn_weights, past_key_value
480
+
481
+ def _flash_attention_forward(
482
+ self, query_states, key_states, value_states, padding_mask, query_length, dropout=0.0, softmax_scale=None
483
+ ):
484
+ """
485
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
486
+ first unpad the input, then computes the attention scores and pad the final attention scores.
487
+
488
+ Args:
489
+ query_states (`torch.Tensor`):
490
+ Input query states to be passed to Flash Attention API
491
+ key_states (`torch.Tensor`):
492
+ Input key states to be passed to Flash Attention API
493
+ value_states (`torch.Tensor`):
494
+ Input value states to be passed to Flash Attention API
495
+ padding_mask (`torch.Tensor`):
496
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
497
+ position of padding tokens and 1 for the position of non-padding tokens.
498
+ dropout (`int`, *optional*):
499
+ Attention dropout
500
+ softmax_scale (`float`, *optional*):
501
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
502
+ """
503
+ # Contains at least one padding token in the sequence
504
+ if padding_mask is not None:
505
+ batch_size = query_states.shape[0]
506
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
507
+ query_states, key_states, value_states, padding_mask, query_length
508
+ )
509
+
510
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
511
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
512
+
513
+ attn_output_unpad = flash_attn_varlen_func(
514
+ query_states,
515
+ key_states,
516
+ value_states,
517
+ cu_seqlens_q=cu_seqlens_q,
518
+ cu_seqlens_k=cu_seqlens_k,
519
+ max_seqlen_q=max_seqlen_in_batch_q,
520
+ max_seqlen_k=max_seqlen_in_batch_k,
521
+ dropout_p=dropout,
522
+ softmax_scale=softmax_scale,
523
+ causal=True,
524
+ )
525
+
526
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
527
+ else:
528
+ attn_output = flash_attn_func(
529
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=True
530
+ )
531
+
532
+ return attn_output
533
+
534
+ def _upad_input(self, query_layer, key_layer, value_layer, padding_mask, query_length):
535
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(padding_mask)
536
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
537
+
538
+ key_layer = index_first_axis(
539
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
540
+ )
541
+ value_layer = index_first_axis(
542
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
543
+ )
544
+ if query_length == kv_seq_len:
545
+ query_layer = index_first_axis(
546
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
547
+ )
548
+ cu_seqlens_q = cu_seqlens_k
549
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
550
+ indices_q = indices_k
551
+ elif query_length == 1:
552
+ max_seqlen_in_batch_q = 1
553
+ cu_seqlens_q = torch.arange(
554
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
555
+ ) # There is a memcpy here, that is very bad.
556
+ indices_q = cu_seqlens_q[:-1]
557
+ query_layer = query_layer.squeeze(1)
558
+ else:
559
+ # The -q_len: slice assumes left padding.
560
+ padding_mask = padding_mask[:, -query_length:]
561
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, padding_mask)
562
+
563
+ return (
564
+ query_layer,
565
+ key_layer,
566
+ value_layer,
567
+ indices_q,
568
+ (cu_seqlens_q, cu_seqlens_k),
569
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
570
+ )
571
+
572
+
573
+ class SkyworkDecoderLayer(nn.Module):
574
+ def __init__(self, config: SkyworkConfig):
575
+ super().__init__()
576
+ self.hidden_size = config.hidden_size
577
+ self.self_attn = (
578
+ SkyworkAttention(config=config)
579
+ if not getattr(config, "_flash_attn_2_enabled", False)
580
+ else SkyworkFlashAttention2(config=config)
581
+ )
582
+ self.mlp = SkyworkMLP(config)
583
+ self.input_layernorm = SkyworkRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
584
+ self.post_attention_layernorm = SkyworkRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
585
+
586
+ def forward(
587
+ self,
588
+ hidden_states: torch.Tensor,
589
+ attention_mask: Optional[torch.Tensor] = None,
590
+ position_ids: Optional[torch.LongTensor] = None,
591
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
592
+ output_attentions: Optional[bool] = False,
593
+ use_cache: Optional[bool] = False,
594
+ padding_mask: Optional[torch.LongTensor] = None,
595
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
596
+ """
597
+ Args:
598
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
599
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
600
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
601
+ output_attentions (`bool`, *optional*):
602
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
603
+ returned tensors for more detail.
604
+ use_cache (`bool`, *optional*):
605
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
606
+ (see `past_key_values`).
607
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
608
+ """
609
+
610
+ residual = hidden_states
611
+
612
+ hidden_states = self.input_layernorm(hidden_states)
613
+
614
+ # Self Attention
615
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
616
+ hidden_states=hidden_states,
617
+ attention_mask=attention_mask,
618
+ position_ids=position_ids,
619
+ past_key_value=past_key_value,
620
+ output_attentions=output_attentions,
621
+ use_cache=use_cache,
622
+ padding_mask=padding_mask,
623
+ )
624
+ hidden_states = residual + hidden_states
625
+
626
+ # Fully Connected
627
+ residual = hidden_states
628
+ hidden_states = self.post_attention_layernorm(hidden_states)
629
+ hidden_states = self.mlp(hidden_states)
630
+ hidden_states = residual + hidden_states
631
+
632
+ outputs = (hidden_states,)
633
+
634
+ if output_attentions:
635
+ outputs += (self_attn_weights,)
636
+
637
+ if use_cache:
638
+ outputs += (present_key_value,)
639
+
640
+ return outputs
641
+
642
+ class SkyworkPreTrainedModel(PreTrainedModel):
643
+ config_class = SkyworkConfig
644
+ base_model_prefix = "model"
645
+ supports_gradient_checkpointing = True
646
+ _no_split_modules = ["SkyworkDecoderLayer"]
647
+ _skip_keys_device_placement = "past_key_values"
648
+ _supports_flash_attn_2 = True
649
+
650
+ def _init_weights(self, module):
651
+ std = self.config.initializer_range
652
+ if isinstance(module, nn.Linear):
653
+ module.weight.data.normal_(mean=0.0, std=std)
654
+ if module.bias is not None:
655
+ module.bias.data.zero_()
656
+ elif isinstance(module, nn.Embedding):
657
+ module.weight.data.normal_(mean=0.0, std=std)
658
+ if module.padding_idx is not None:
659
+ module.weight.data[module.padding_idx].zero_()
660
+
661
+ def _set_gradient_checkpointing(self, module, value=False):
662
+ if isinstance(module, SkyworkModel):
663
+ module.gradient_checkpointing = value
664
+
665
+ class SkyworkModel(SkyworkPreTrainedModel):
666
+ """
667
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`SkyworkDecoderLayer`]
668
+
669
+ Args:
670
+ config: SkyworkConfig
671
+ """
672
+
673
+ def __init__(self, config: SkyworkConfig):
674
+ super().__init__(config)
675
+ self.padding_idx = config.pad_token_id
676
+ self.vocab_size = config.vocab_size
677
+
678
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
679
+ self.layers = nn.ModuleList([SkyworkDecoderLayer(config) for _ in range(config.num_hidden_layers)])
680
+ self.norm = SkyworkRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
681
+
682
+ self.gradient_checkpointing = False
683
+ # Initialize weights and apply final processing
684
+ self.post_init()
685
+
686
+ def get_input_embeddings(self):
687
+ return self.embed_tokens
688
+
689
+ def set_input_embeddings(self, value):
690
+ self.embed_tokens = value
691
+
692
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
693
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
694
+ # create causal mask
695
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
696
+ combined_attention_mask = None
697
+ if input_shape[-1] > 1:
698
+ combined_attention_mask = _make_causal_mask(
699
+ input_shape,
700
+ inputs_embeds.dtype,
701
+ device=inputs_embeds.device,
702
+ past_key_values_length=past_key_values_length,
703
+ )
704
+
705
+ if attention_mask is not None:
706
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
707
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
708
+ inputs_embeds.device
709
+ )
710
+ combined_attention_mask = (
711
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
712
+ )
713
+
714
+ return combined_attention_mask
715
+
716
+ def forward(
717
+ self,
718
+ input_ids: torch.LongTensor = None,
719
+ attention_mask: Optional[torch.Tensor] = None,
720
+ position_ids: Optional[torch.LongTensor] = None,
721
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
722
+ inputs_embeds: Optional[torch.FloatTensor] = None,
723
+ use_cache: Optional[bool] = None,
724
+ output_attentions: Optional[bool] = None,
725
+ output_hidden_states: Optional[bool] = None,
726
+ return_dict: Optional[bool] = None,
727
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
728
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
729
+ output_hidden_states = (
730
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
731
+ )
732
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
733
+
734
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
735
+
736
+ # retrieve input_ids and inputs_embeds
737
+ if input_ids is not None and inputs_embeds is not None:
738
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
739
+ elif input_ids is not None:
740
+ batch_size, seq_length = input_ids.shape
741
+ elif inputs_embeds is not None:
742
+ batch_size, seq_length, _ = inputs_embeds.shape
743
+ else:
744
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
745
+
746
+ seq_length_with_past = seq_length
747
+ past_key_values_length = 0
748
+
749
+ if past_key_values is not None:
750
+ past_key_values_length = past_key_values[0][0].shape[2]
751
+ seq_length_with_past = seq_length_with_past + past_key_values_length
752
+
753
+ if position_ids is None:
754
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
755
+ position_ids = torch.arange(
756
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
757
+ )
758
+ position_ids = position_ids.unsqueeze(0)
759
+
760
+ if inputs_embeds is None:
761
+ inputs_embeds = self.embed_tokens(input_ids)
762
+ # embed positions
763
+ if attention_mask is None:
764
+ attention_mask = torch.ones(
765
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
766
+ )
767
+ padding_mask = None
768
+ else:
769
+ if 0 in attention_mask:
770
+ padding_mask = attention_mask
771
+ else:
772
+ padding_mask = None
773
+
774
+ attention_mask = self._prepare_decoder_attention_mask(
775
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
776
+ )
777
+
778
+ hidden_states = inputs_embeds
779
+
780
+ if self.gradient_checkpointing and self.training:
781
+ if use_cache:
782
+ logger.warning_once(
783
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
784
+ )
785
+ use_cache = False
786
+
787
+ # decoder layers
788
+ all_hidden_states = () if output_hidden_states else None
789
+ all_self_attns = () if output_attentions else None
790
+ next_decoder_cache = () if use_cache else None
791
+
792
+ for idx, decoder_layer in enumerate(self.layers):
793
+ if output_hidden_states:
794
+ all_hidden_states += (hidden_states,)
795
+
796
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
797
+
798
+ if self.gradient_checkpointing and self.training:
799
+
800
+ def create_custom_forward(module):
801
+ def custom_forward(*inputs):
802
+ # None for past_key_value
803
+ return module(*inputs, past_key_value, output_attentions, padding_mask=padding_mask)
804
+
805
+ return custom_forward
806
+
807
+ layer_outputs = torch.utils.checkpoint.checkpoint(
808
+ create_custom_forward(decoder_layer), hidden_states, attention_mask, position_ids
809
+ )
810
+ else:
811
+ layer_outputs = decoder_layer(
812
+ hidden_states,
813
+ attention_mask=attention_mask,
814
+ position_ids=position_ids,
815
+ past_key_value=past_key_value,
816
+ output_attentions=output_attentions,
817
+ use_cache=use_cache,
818
+ padding_mask=padding_mask,
819
+ )
820
+
821
+ hidden_states = layer_outputs[0]
822
+
823
+ if use_cache:
824
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
825
+
826
+ if output_attentions:
827
+ all_self_attns += (layer_outputs[1],)
828
+
829
+ hidden_states = self.norm(hidden_states)
830
+
831
+ # add hidden states from the last decoder layer
832
+ if output_hidden_states:
833
+ all_hidden_states += (hidden_states,)
834
+
835
+ next_cache = next_decoder_cache if use_cache else None
836
+ if not return_dict:
837
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
838
+ return BaseModelOutputWithPast(
839
+ last_hidden_state=hidden_states,
840
+ past_key_values=next_cache,
841
+ hidden_states=all_hidden_states,
842
+ attentions=all_self_attns,
843
+ )
844
+
845
+
846
+ class SkyworkForCausalLM(SkyworkPreTrainedModel):
847
+ _tied_weights_keys = ["lm_head.weight"]
848
+
849
+ def __init__(self, config):
850
+ super().__init__(config)
851
+ self.model = SkyworkModel(config)
852
+ self.vocab_size = config.vocab_size
853
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
854
+
855
+ # Initialize weights and apply final processing
856
+ self.post_init()
857
+
858
+ def get_input_embeddings(self):
859
+ return self.model.embed_tokens
860
+
861
+ def set_input_embeddings(self, value):
862
+ self.model.embed_tokens = value
863
+
864
+ def get_output_embeddings(self):
865
+ return self.lm_head
866
+
867
+ def set_output_embeddings(self, new_embeddings):
868
+ self.lm_head = new_embeddings
869
+
870
+ def set_decoder(self, decoder):
871
+ self.model = decoder
872
+
873
+ def get_decoder(self):
874
+ return self.model
875
+
876
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
877
+ def forward(
878
+ self,
879
+ input_ids: torch.LongTensor = None,
880
+ attention_mask: Optional[torch.Tensor] = None,
881
+ position_ids: Optional[torch.LongTensor] = None,
882
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
883
+ inputs_embeds: Optional[torch.FloatTensor] = None,
884
+ labels: Optional[torch.LongTensor] = None,
885
+ use_cache: Optional[bool] = None,
886
+ output_attentions: Optional[bool] = None,
887
+ output_hidden_states: Optional[bool] = None,
888
+ return_dict: Optional[bool] = None,
889
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
890
+ r"""
891
+ Args:
892
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
893
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
894
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
895
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
896
+
897
+ Returns:
898
+
899
+ Example:
900
+
901
+ ```python
902
+ >>> from transformers import AutoTokenizer, SkyworkForCausalLM
903
+
904
+ >>> model = SkyworkForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
905
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
906
+
907
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
908
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
909
+
910
+ >>> # Generate
911
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
912
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
913
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
914
+ ```"""
915
+
916
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
917
+ output_hidden_states = (
918
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
919
+ )
920
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
921
+
922
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
923
+ outputs = self.model(
924
+ input_ids=input_ids,
925
+ attention_mask=attention_mask,
926
+ position_ids=position_ids,
927
+ past_key_values=past_key_values,
928
+ inputs_embeds=inputs_embeds,
929
+ use_cache=use_cache,
930
+ output_attentions=output_attentions,
931
+ output_hidden_states=output_hidden_states,
932
+ return_dict=return_dict,
933
+ )
934
+
935
+ hidden_states = outputs[0]
936
+ if self.config.pretraining_tp > 1:
937
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
938
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
939
+ logits = torch.cat(logits, dim=-1)
940
+ else:
941
+ logits = self.lm_head(hidden_states)
942
+ logits = logits.float()
943
+
944
+ loss = None
945
+ if labels is not None:
946
+ # Shift so that tokens < n predict n
947
+ shift_logits = logits[..., :-1, :].contiguous()
948
+ shift_labels = labels[..., 1:].contiguous()
949
+ # Flatten the tokens
950
+ loss_fct = CrossEntropyLoss()
951
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
952
+ shift_labels = shift_labels.view(-1)
953
+ # Enable model parallelism
954
+ shift_labels = shift_labels.to(shift_logits.device)
955
+ loss = loss_fct(shift_logits, shift_labels)
956
+
957
+ if not return_dict:
958
+ output = (logits,) + outputs[1:]
959
+ return (loss,) + output if loss is not None else output
960
+
961
+ return CausalLMOutputWithPast(
962
+ loss=loss,
963
+ logits=logits,
964
+ past_key_values=outputs.past_key_values,
965
+ hidden_states=outputs.hidden_states,
966
+ attentions=outputs.attentions,
967
+ )
968
+
969
+ def prepare_inputs_for_generation(
970
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
971
+ ):
972
+ if past_key_values:
973
+ input_ids = input_ids[:, -1:]
974
+
975
+ position_ids = kwargs.get("position_ids", None)
976
+ if attention_mask is not None and position_ids is None:
977
+ # create position_ids on the fly for batch generation
978
+ position_ids = attention_mask.long().cumsum(-1) - 1
979
+ position_ids.masked_fill_(attention_mask == 0, 1)
980
+ if past_key_values:
981
+ position_ids = position_ids[:, -1].unsqueeze(-1)
982
+
983
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
984
+ if inputs_embeds is not None and past_key_values is None:
985
+ model_inputs = {"inputs_embeds": inputs_embeds}
986
+ else:
987
+ model_inputs = {"input_ids": input_ids}
988
+
989
+ model_inputs.update(
990
+ {
991
+ "position_ids": position_ids,
992
+ "past_key_values": past_key_values,
993
+ "use_cache": kwargs.get("use_cache"),
994
+ "attention_mask": attention_mask,
995
+ }
996
+ )
997
+ return model_inputs
998
+
999
+ @staticmethod
1000
+ def _reorder_cache(past_key_values, beam_idx):
1001
+ reordered_past = ()
1002
+ for layer_past in past_key_values:
1003
+ reordered_past += (
1004
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1005
+ )
1006
+ return reordered_past
1007
+
1008
+ class SkyworkForSequenceClassification(SkyworkPreTrainedModel):
1009
+ def __init__(self, config):
1010
+ super().__init__(config)
1011
+ self.num_labels = config.num_labels
1012
+ self.model = SkyworkModel(config)
1013
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1014
+
1015
+ # Initialize weights and apply final processing
1016
+ self.post_init()
1017
+
1018
+ def get_input_embeddings(self):
1019
+ return self.model.embed_tokens
1020
+
1021
+ def set_input_embeddings(self, value):
1022
+ self.model.embed_tokens = value
1023
+
1024
+ def forward(
1025
+ self,
1026
+ input_ids: torch.LongTensor = None,
1027
+ attention_mask: Optional[torch.Tensor] = None,
1028
+ position_ids: Optional[torch.LongTensor] = None,
1029
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1030
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1031
+ labels: Optional[torch.LongTensor] = None,
1032
+ use_cache: Optional[bool] = None,
1033
+ output_attentions: Optional[bool] = None,
1034
+ output_hidden_states: Optional[bool] = None,
1035
+ return_dict: Optional[bool] = None,
1036
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1037
+ r"""
1038
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1039
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1040
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1041
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1042
+ """
1043
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1044
+
1045
+ transformer_outputs = self.model(
1046
+ input_ids,
1047
+ attention_mask=attention_mask,
1048
+ position_ids=position_ids,
1049
+ past_key_values=past_key_values,
1050
+ inputs_embeds=inputs_embeds,
1051
+ use_cache=use_cache,
1052
+ output_attentions=output_attentions,
1053
+ output_hidden_states=output_hidden_states,
1054
+ return_dict=return_dict,
1055
+ )
1056
+ hidden_states = transformer_outputs[0]
1057
+ logits = self.score(hidden_states)
1058
+
1059
+ if input_ids is not None:
1060
+ batch_size = input_ids.shape[0]
1061
+ else:
1062
+ batch_size = inputs_embeds.shape[0]
1063
+
1064
+ if self.config.pad_token_id is None and batch_size != 1:
1065
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1066
+ if self.config.pad_token_id is None:
1067
+ sequence_lengths = -1
1068
+ else:
1069
+ if input_ids is not None:
1070
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
1071
+ logits.device
1072
+ )
1073
+ else:
1074
+ sequence_lengths = -1
1075
+
1076
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1077
+
1078
+ loss = None
1079
+ if labels is not None:
1080
+ labels = labels.to(logits.device)
1081
+ if self.config.problem_type is None:
1082
+ if self.num_labels == 1:
1083
+ self.config.problem_type = "regression"
1084
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1085
+ self.config.problem_type = "single_label_classification"
1086
+ else:
1087
+ self.config.problem_type = "multi_label_classification"
1088
+
1089
+ if self.config.problem_type == "regression":
1090
+ loss_fct = MSELoss()
1091
+ if self.num_labels == 1:
1092
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1093
+ else:
1094
+ loss = loss_fct(pooled_logits, labels)
1095
+ elif self.config.problem_type == "single_label_classification":
1096
+ loss_fct = CrossEntropyLoss()
1097
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1098
+ elif self.config.problem_type == "multi_label_classification":
1099
+ loss_fct = BCEWithLogitsLoss()
1100
+ loss = loss_fct(pooled_logits, labels)
1101
+ if not return_dict:
1102
+ output = (pooled_logits,) + transformer_outputs[1:]
1103
+ return ((loss,) + output) if loss is not None else output
1104
+
1105
+ return SequenceClassifierOutputWithPast(
1106
+ loss=loss,
1107
+ logits=pooled_logits,
1108
+ past_key_values=transformer_outputs.past_key_values,
1109
+ hidden_states=transformer_outputs.hidden_states,
1110
+ attentions=transformer_outputs.attentions,
1111
+ )
pytorch_model-00001-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a66c625e67efcb4d285b8011f89ca65f4e8cadacdf8df33388c6530ac9c19fc3
3
+ size 509630258
pytorch_model-00002-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d6e9de5a6a1e245509ad0814f79f74960507f73c55df42f91d144b28e76d138
3
+ size 509630258
pytorch_model-00003-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0075dc5d2ac98bba65f7a26b62abb9e51f4529ed5c8ad1adf9012829717068a7
3
+ size 509630258
pytorch_model-00004-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c03a55b6dd69963de799f9e4e68dd9dfd7c7a1c8806429a8eb4da631ed87e4b
3
+ size 509630258
pytorch_model-00005-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:574303f35585b6b9e9484b037e41c88dcac782c7fdbbc91b1ac763fbac69a6ef
3
+ size 509630258
pytorch_model-00006-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fc50b06acc880c3ae1ea30e8a283e02a8fed4a01b88b8af19aeb874986c0c5a
3
+ size 509630258
pytorch_model-00007-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe61a6e19549dc578f87cc18611b118cd5d9bca5f55df3262ecbadb359f14aed
3
+ size 509630258
pytorch_model-00008-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce0568a6c6c45438f4ceaf9163a1ec5c1f2e94a895aafb22eb7f5306ebd96476
3
+ size 509630258
pytorch_model-00009-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19a0709dbf1aedab174666107458f8baff39627f1762a1a13956dffa6e8bd7bf
3
+ size 509630258
pytorch_model-00010-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dfdef85630ebffc27c0bcc1b887d346ccc0f9fd9b96724b3a1ef2987c3237e7
3
+ size 509630258
pytorch_model-00011-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e695ff35e2d6b9b58ad6cb4428e6ce4f6973f739ea0bacf5f2b32dac98f85fb
3
+ size 509630258
pytorch_model-00012-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c609ade39fadbbb033cff18b5fad7d6f98e10a74afb16b795515859a669f5360
3
+ size 509630258
pytorch_model-00013-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a367e8104c5d350dbfeb305848ec64741685319530c4a327eae294d19b519e9
3
+ size 509630258
pytorch_model-00014-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d91b8d9d2ad5b041311070a5f0f067c33a400bbbc30c9351b6616fef62218d7
3
+ size 509630258
pytorch_model-00015-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77639fdc39e85982cdffb9d6bddbe7ecef43bbd3cecd9ec3c833ad3257365593
3
+ size 509630258
pytorch_model-00016-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51f661c69bb9c3cd0bb18e46b797a8d60d6128228d2b35726b4e9a16c2783599
3
+ size 509630258
pytorch_model-00017-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1821b6116b258236d6f2a51a502c7d00be570eeccf9b4c2e6e514c18e1f008d
3
+ size 509630258
pytorch_model-00018-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc033b2886cc132ee296379c6180e0cc454a4b50abebffcb53728896b4e86edf
3
+ size 509630258
pytorch_model-00019-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0567183b7a2b4638de4ac58303c0c8ef6bf1259a7d88c07071abb7d58fb772f
3
+ size 509630258
pytorch_model-00020-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab23d1483ba6e01dd86b55fe8722143f0d2122d9e290935e7b6d37694aceea92
3
+ size 509630258
pytorch_model-00021-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0226e588abff357c81c2d59925970b3f3976046b2f2f0c72e6a46a2a2168c6a7
3
+ size 509630258
pytorch_model-00022-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbde38b2f16f3767c1a02a17b6207f72fce1a0d2b86de697c44a89f200ff8b7c
3
+ size 509630258
pytorch_model-00023-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8f4f236c8b9dd5252ea6e961b8d2a3df016be1bd91c1a64f525f47e61257d45
3
+ size 509630258
pytorch_model-00024-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:547b76a45fd1471f7dc391ec5e7c083ab5ae658bde51d2ab450c526404e0593a
3
+ size 509630258
pytorch_model-00025-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e20ca4e8f3d92709e635606bd8315820a77f4a7887022ca887692368ef89ab08
3
+ size 509630258
pytorch_model-00026-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19a90a2a54147961aceaaf5c0461322259e3de89b823f2c48ea8d257c3985fe6
3
+ size 509630258
pytorch_model-00027-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc13374460352a473a4fd178d7f33725cfeac6314943a2de5a6c08e91642b615
3
+ size 509630258
pytorch_model-00028-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a09e286c832e71c0e1de5fc2d05f39fe13e259b4aad9a1020ffb88afcc480564
3
+ size 509630258
pytorch_model-00029-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3e2095a7796bf96166f5199f982cc4b5eb2a303c3096ecc6b6fc0feff797ebc
3
+ size 509630258
pytorch_model-00030-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d41a26b08042e9325966d68d468e8183e37767444b83b36b875d895f65674e51
3
+ size 509630258
pytorch_model-00031-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a2d33930c6abc4dcb9ccd884ac4b99150b2808973e41a42cf5856a17afcbd88
3
+ size 509630258
pytorch_model-00032-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:826ba78f43146050dfcf194f8c9e69382d8a01126cbaacbf4daa75c56adcd4ff
3
+ size 509630258
pytorch_model-00033-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b600bdedbfd341df5bac4fea254727fea1a0c683b9152d45a886bb56ad5ae2aa
3
+ size 509630258
pytorch_model-00034-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6df191d61d5ec68c4245c65381bb6f2b67572a7b97d31244a56b189f81c46a79
3
+ size 509630258
pytorch_model-00035-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b1e7cca330157655301b83f5f14591249382aa0496aa4f0b04a6eb6b767bdbb
3
+ size 509630258
pytorch_model-00036-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47e6ae0cf866e3ce80915975d8afaadd0491a2f60ff2623a122354e9860340c4
3
+ size 509630258
pytorch_model-00037-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d4272b2ab4d35cfdc11b0217e7d8380bf5bf05b89058ae03456778fa44fb0fb
3
+ size 509630258
pytorch_model-00038-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf7058177fd58677edee0aa1001cc6f093ef3e9fd108d029df029bd6a731d868
3
+ size 509630258
pytorch_model-00039-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:908b393127098ac3351cc246352905f4eb86da0c48d97b8118a5113faa8a50e9
3
+ size 509630258
pytorch_model-00040-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c25721010c11a07cee259e6a04e64051631e9ac79e490d7e5f2067dd8cd121ce
3
+ size 509630258
pytorch_model-00041-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e5b261d830a6fd7aa47e5a907e3c9dc76d45ea826c55b3c5b5ce18e0644d7e6
3
+ size 509630258
pytorch_model-00042-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:637bfcd97bce0b8e22b4057b33a04bbbb1fbb1ee700457f8b969d12c710f81d5
3
+ size 509630258
pytorch_model-00043-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a8030077ce002950a186be16e1649df6eeae8b923ab1a2f55b0a2344f7afdcf
3
+ size 509630258
pytorch_model-00044-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:087e8c93103d09ca1c4cc869125be89d6966735cd7e5c47d9e48d0d6539510e2
3
+ size 509630258
pytorch_model-00045-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23dbe8d1e8ef57e111dd8f47471aae8036d94ebb07b75519c73595f98f8a19d0
3
+ size 509630258
pytorch_model-00046-of-00053.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bba0c4f8fcc45c9512f077b17c6884099de03a771bb056775e13decd445b413
3
+ size 509630258