GPUDiff-V1 / model.py
SkillForge45's picture
Create model.py
672357f verified
import os
import requests
import tarfile
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import json
import math
from tqdm import tqdm
from transformers import BertTokenizer, BertModel
import gradio as gr
# Configuration
class Config:
device = "cuda" if torch.cuda.is_available() else "cpu"
image_size = 64
batch_size = 32
num_epochs = 50
learning_rate = 1e-4
timesteps = 1000
text_embed_dim = 768
num_images_options = [1, 4, 6]
# URLs for COCO dataset download
coco_images_url = "http://images.cocodataset.org/zips/train2017.zip"
coco_annotations_url = "http://images.cocodataset.org/annotations/annotations_trainval2017.zip"
data_dir = "./coco_data"
images_dir = os.path.join(data_dir, "train2017")
annotations_path = os.path.join(data_dir, "annotations/instances_train2017.json")
def __init__(self):
os.makedirs(self.data_dir, exist_ok=True)
config = Config()
# Download COCO dataset
def download_and_extract_coco():
if os.path.exists(config.images_dir) and os.path.exists(config.annotations_path):
print("COCO dataset already downloaded")
return
print("Downloading COCO dataset...")
# Download images
images_zip_path = os.path.join(config.data_dir, "train2017.zip")
if not os.path.exists(images_zip_path):
response = requests.get(config.coco_images_url, stream=True)
with open(images_zip_path, "wb") as f:
for chunk in tqdm(response.iter_content(chunk_size=1024)):
if chunk:
f.write(chunk)
# Download annotations
annotations_zip_path = os.path.join(config.data_dir, "annotations_trainval2017.zip")
if not os.path.exists(annotations_zip_path):
response = requests.get(config.coco_annotations_url, stream=True)
with open(annotations_zip_path, "wb") as f:
for chunk in tqdm(response.iter_content(chunk_size=1024)):
if chunk:
f.write(chunk)
# Extract files
print("Extracting images...")
with tarfile.open(images_zip_path, "r:zip") as tar:
tar.extractall(config.data_dir)
print("Extracting annotations...")
with tarfile.open(annotations_zip_path, "r:zip") as tar:
tar.extractall(config.data_dir)
print("COCO dataset ready")
download_and_extract_coco()
# Text model
class TextEncoder(nn.Module):
def __init__(self):
super().__init__()
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.model = BertModel.from_pretrained('bert-base-uncased')
for param in self.model.parameters():
param.requires_grad = False
def forward(self, texts):
inputs = self.tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=64)
inputs = {k: v.to(config.device) for k, v in inputs.items()}
outputs = self.model(**inputs)
return outputs.last_hidden_state[:, 0, :]
text_encoder = TextEncoder().to(config.device)
# Diffusion model
class ConditionalUNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.down1 = DownBlock(64, 128)
self.down2 = DownBlock(128, 256)
self.text_proj = nn.Linear(config.text_embed_dim, 256)
self.merge = nn.Linear(256 + 256, 256)
self.up1 = UpBlock(256, 128)
self.up2 = UpBlock(128, 64)
self.final = nn.Conv2d(64, 3, kernel_size=3, padding=1)
def forward(self, x, t, text_emb):
x1 = F.relu(self.conv1(x))
x2 = self.down1(x1)
x3 = self.down2(x2)
text_emb = self.text_proj(text_emb)
text_emb = text_emb.unsqueeze(-1).unsqueeze(-1)
text_emb = text_emb.expand(-1, -1, x3.size(2), x3.size(3))
x = torch.cat([x3, text_emb], dim=1)
b, c, h, w = x.shape
x = x.permute(0, 2, 3, 1).reshape(b*h*w, c)
x = self.merge(x)
x = x.reshape(b, h, w, 256).permute(0, 3, 1, 2)
x = self.up1(x)
x = self.up2(x)
return self.final(x)
class DownBlock(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(),
nn.MaxPool2d(2)
)
def forward(self, x):
return self.conv(x)
class UpBlock(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU()
)
def forward(self, x):
x = self.up(x)
return self.conv(x)
# Diffusion process
betas = linear_beta_schedule(config.timesteps).to(config.device)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod)
def linear_beta_schedule(timesteps):
beta_start = 0.0001
beta_end = 0.02
return torch.linspace(beta_start, beta_end, timesteps)
def forward_diffusion_sample(x_0, t, device=config.device):
noise = torch.randn_like(x_0)
sqrt_alphas_cumprod_t = sqrt_alphas_cumprod[t].view(-1, 1, 1, 1)
sqrt_one_minus_alphas_cumprod_t = sqrt_one_minus_alphas_cumprod[t].view(-1, 1, 1, 1)
return sqrt_alphas_cumprod_t * x_0 + sqrt_one_minus_alphas_cumprod_t * noise, noise
# COCO Dataset
class CocoDataset(Dataset):
def __init__(self, root_dir, annotations_file, transform=None):
self.root_dir = root_dir
self.transform = transform
with open(annotations_file, 'r') as f:
data = json.load(f)
self.images = []
self.captions = []
image_id_to_captions = {}
for ann in data['annotations']:
if ann['image_id'] not in image_id_to_captions:
image_id_to_captions[ann['image_id']] = []
image_id_to_captions[ann['image_id']].append(ann['caption'])
for img in data['images']:
if img['id'] in image_id_to_captions:
self.images.append(img)
self.captions.append(image_id_to_captions[img['id']][0])
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img_path = os.path.join(self.root_dir, self.images[idx]['file_name'])
image = Image.open(img_path).convert('RGB')
caption = self.captions[idx]
if self.transform:
image = self.transform(image)
return image, caption
# Transformations
transform = transforms.Compose([
transforms.Resize((config.image_size, config.image_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# Model initialization
model = ConditionalUNet().to(config.device)
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
# Training
def train():
dataset = CocoDataset(config.images_dir, config.annotations_path, transform)
dataloader = DataLoader(dataset, batch_size=config.batch_size, shuffle=True)
for epoch in range(config.num_epochs):
for batch_idx, (images, captions) in enumerate(tqdm(dataloader)):
images = images.to(config.device)
# Get text embeddings
text_emb = text_encoder(captions)
# Sample random timesteps
t = torch.randint(0, config.timesteps, (images.size(0),), device=config.device)
# Forward diffusion
x_noisy, noise = forward_diffusion_sample(images, t)
# Predict noise
pred_noise = model(x_noisy, t, text_emb)
# Loss and backpropagation
loss = F.mse_loss(pred_noise, noise)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print(f"Epoch {epoch}, Batch {batch_idx}, Loss: {loss.item():.4f}")
# Save model
torch.save(model.state_dict(), f"model_epoch_{epoch}.pth")
# Generation
@torch.no_grad()
def generate(prompt, num_images=1):
model.eval()
num_images = int(num_images)
text_emb = text_encoder([prompt]*num_images)
x = torch.randn((num_images, 3, config.image_size, config.image_size)).to(config.device)
for t in reversed(range(config.timesteps)):
t_tensor = torch.full((num_images,), t, device=config.device)
pred_noise = model(x, t_tensor, text_emb)
alpha_t = alphas[t].view(1, 1, 1, 1)
alpha_cumprod_t = alphas_cumprod[t].view(1, 1, 1, 1)
beta_t = betas[t].view(1, 1, 1, 1)
if t > 0:
noise = torch.randn_like(x)
else:
noise = torch.zeros_like(x)
x = (1 / torch.sqrt(alpha_t)) * (
x - ((1 - alpha_t) / torch.sqrt(1 - alpha_cumprod_t)) * pred_noise
) + torch.sqrt(beta_t) * noise
x = torch.clamp(x, -1, 1)
x = (x + 1) / 2
images = []
for img in x:
img = transforms.ToPILImage()(img.cpu())
images.append(img)
return images
# GUI
def generate_and_display(prompt, num_images):
images = generate(prompt, num_images)
fig, axes = plt.subplots(1, len(images), figsize=(5*len(images), 5))
if len(images) == 1:
axes.imshow(images[0])
axes.axis('off')
else:
for ax, img in zip(axes, images):
ax.imshow(img)
ax.axis('off')
plt.tight_layout()
return fig
with gr.Blocks() as demo:
gr.Markdown("## GPUDiff-V1: diffussion powerful image generator!")
with gr.Row():
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter image description...")
num_select = gr.Dropdown(choices=config.num_images_options, value=1, label="Number of images")
generate_btn = gr.Button("Generate")
output = gr.Plot()
generate_btn.click(
fn=generate_and_display,
inputs=[prompt_input, num_select],
outputs=output
)
if __name__ == "__main__":
train()
demo.launch()