metadata
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: trainerH
results: []
trainerH
This model is a fine-tuned version of distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0027
- Precision: 0.8141
- Recall: 0.8067
- F1: 0.8073
- Accuracy: 0.8067
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.9463 | 0.14 | 30 | 1.8631 | 0.1245 | 0.1625 | 0.0819 | 0.1625 |
1.7589 | 0.27 | 60 | 1.4567 | 0.4725 | 0.5098 | 0.4483 | 0.5098 |
1.389 | 0.41 | 90 | 1.2228 | 0.6230 | 0.5714 | 0.5547 | 0.5714 |
1.2009 | 0.54 | 120 | 1.0306 | 0.7264 | 0.6835 | 0.6666 | 0.6835 |
1.0999 | 0.68 | 150 | 0.8052 | 0.7808 | 0.7647 | 0.7625 | 0.7647 |
0.8848 | 0.81 | 180 | 0.7826 | 0.7499 | 0.7283 | 0.7191 | 0.7283 |
0.685 | 0.95 | 210 | 0.7337 | 0.7765 | 0.7591 | 0.7587 | 0.7591 |
0.5562 | 1.08 | 240 | 0.6653 | 0.7897 | 0.7871 | 0.7863 | 0.7871 |
0.4662 | 1.22 | 270 | 0.7158 | 0.7895 | 0.7535 | 0.7539 | 0.7535 |
0.3985 | 1.35 | 300 | 0.6552 | 0.8160 | 0.8011 | 0.8024 | 0.8011 |
0.317 | 1.49 | 330 | 0.7378 | 0.7902 | 0.7843 | 0.7836 | 0.7843 |
0.4177 | 1.62 | 360 | 0.6983 | 0.8085 | 0.8039 | 0.8028 | 0.8039 |
0.383 | 1.76 | 390 | 0.7612 | 0.7979 | 0.7759 | 0.7640 | 0.7759 |
0.2906 | 1.89 | 420 | 0.7369 | 0.7914 | 0.7759 | 0.7761 | 0.7759 |
0.3305 | 2.03 | 450 | 0.7302 | 0.7904 | 0.7787 | 0.7791 | 0.7787 |
0.1398 | 2.16 | 480 | 0.7798 | 0.8169 | 0.8095 | 0.8084 | 0.8095 |
0.0988 | 2.3 | 510 | 0.9284 | 0.7902 | 0.7815 | 0.7799 | 0.7815 |
0.1449 | 2.43 | 540 | 0.8863 | 0.8196 | 0.8123 | 0.8133 | 0.8123 |
0.2552 | 2.57 | 570 | 0.8396 | 0.8227 | 0.8179 | 0.8177 | 0.8179 |
0.1616 | 2.7 | 600 | 0.8182 | 0.8172 | 0.8123 | 0.8128 | 0.8123 |
0.2163 | 2.84 | 630 | 0.8075 | 0.8031 | 0.7983 | 0.7994 | 0.7983 |
0.2134 | 2.97 | 660 | 0.9430 | 0.8190 | 0.8067 | 0.8080 | 0.8067 |
0.1255 | 3.11 | 690 | 0.8907 | 0.8166 | 0.8123 | 0.8116 | 0.8123 |
0.0969 | 3.24 | 720 | 0.8805 | 0.8009 | 0.7983 | 0.7977 | 0.7983 |
0.0649 | 3.38 | 750 | 0.9065 | 0.7957 | 0.7843 | 0.7846 | 0.7843 |
0.0328 | 3.51 | 780 | 0.9083 | 0.8141 | 0.8095 | 0.8093 | 0.8095 |
0.0274 | 3.65 | 810 | 0.8894 | 0.8096 | 0.8011 | 0.8011 | 0.8011 |
0.0906 | 3.78 | 840 | 0.9425 | 0.8166 | 0.8095 | 0.8101 | 0.8095 |
0.0906 | 3.92 | 870 | 0.9333 | 0.8066 | 0.8011 | 0.8011 | 0.8011 |
0.0641 | 4.05 | 900 | 0.9052 | 0.8108 | 0.8067 | 0.8063 | 0.8067 |
0.0246 | 4.19 | 930 | 0.9993 | 0.8017 | 0.7955 | 0.7946 | 0.7955 |
0.0551 | 4.32 | 960 | 0.9899 | 0.8174 | 0.8123 | 0.8122 | 0.8123 |
0.0084 | 4.46 | 990 | 0.9954 | 0.8127 | 0.8067 | 0.8066 | 0.8067 |
0.0049 | 4.59 | 1020 | 0.9912 | 0.8145 | 0.8095 | 0.8093 | 0.8095 |
0.0217 | 4.73 | 1050 | 0.9957 | 0.8128 | 0.8067 | 0.8067 | 0.8067 |
0.0144 | 4.86 | 1080 | 1.0042 | 0.8164 | 0.8095 | 0.8100 | 0.8095 |
0.0276 | 5.0 | 1110 | 1.0027 | 0.8141 | 0.8067 | 0.8073 | 0.8067 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2