trainerH / README.md
SimoneJLaudani's picture
End of training
34af40f verified
|
raw
history blame
4.83 kB
metadata
license: apache-2.0
base_model: distilbert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: trainerH
    results: []

trainerH

This model is a fine-tuned version of distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0027
  • Precision: 0.8141
  • Recall: 0.8067
  • F1: 0.8073
  • Accuracy: 0.8067

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.9463 0.14 30 1.8631 0.1245 0.1625 0.0819 0.1625
1.7589 0.27 60 1.4567 0.4725 0.5098 0.4483 0.5098
1.389 0.41 90 1.2228 0.6230 0.5714 0.5547 0.5714
1.2009 0.54 120 1.0306 0.7264 0.6835 0.6666 0.6835
1.0999 0.68 150 0.8052 0.7808 0.7647 0.7625 0.7647
0.8848 0.81 180 0.7826 0.7499 0.7283 0.7191 0.7283
0.685 0.95 210 0.7337 0.7765 0.7591 0.7587 0.7591
0.5562 1.08 240 0.6653 0.7897 0.7871 0.7863 0.7871
0.4662 1.22 270 0.7158 0.7895 0.7535 0.7539 0.7535
0.3985 1.35 300 0.6552 0.8160 0.8011 0.8024 0.8011
0.317 1.49 330 0.7378 0.7902 0.7843 0.7836 0.7843
0.4177 1.62 360 0.6983 0.8085 0.8039 0.8028 0.8039
0.383 1.76 390 0.7612 0.7979 0.7759 0.7640 0.7759
0.2906 1.89 420 0.7369 0.7914 0.7759 0.7761 0.7759
0.3305 2.03 450 0.7302 0.7904 0.7787 0.7791 0.7787
0.1398 2.16 480 0.7798 0.8169 0.8095 0.8084 0.8095
0.0988 2.3 510 0.9284 0.7902 0.7815 0.7799 0.7815
0.1449 2.43 540 0.8863 0.8196 0.8123 0.8133 0.8123
0.2552 2.57 570 0.8396 0.8227 0.8179 0.8177 0.8179
0.1616 2.7 600 0.8182 0.8172 0.8123 0.8128 0.8123
0.2163 2.84 630 0.8075 0.8031 0.7983 0.7994 0.7983
0.2134 2.97 660 0.9430 0.8190 0.8067 0.8080 0.8067
0.1255 3.11 690 0.8907 0.8166 0.8123 0.8116 0.8123
0.0969 3.24 720 0.8805 0.8009 0.7983 0.7977 0.7983
0.0649 3.38 750 0.9065 0.7957 0.7843 0.7846 0.7843
0.0328 3.51 780 0.9083 0.8141 0.8095 0.8093 0.8095
0.0274 3.65 810 0.8894 0.8096 0.8011 0.8011 0.8011
0.0906 3.78 840 0.9425 0.8166 0.8095 0.8101 0.8095
0.0906 3.92 870 0.9333 0.8066 0.8011 0.8011 0.8011
0.0641 4.05 900 0.9052 0.8108 0.8067 0.8063 0.8067
0.0246 4.19 930 0.9993 0.8017 0.7955 0.7946 0.7955
0.0551 4.32 960 0.9899 0.8174 0.8123 0.8122 0.8123
0.0084 4.46 990 0.9954 0.8127 0.8067 0.8066 0.8067
0.0049 4.59 1020 0.9912 0.8145 0.8095 0.8093 0.8095
0.0217 4.73 1050 0.9957 0.8128 0.8067 0.8067 0.8067
0.0144 4.86 1080 1.0042 0.8164 0.8095 0.8100 0.8095
0.0276 5.0 1110 1.0027 0.8141 0.8067 0.8073 0.8067

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2