|
--- |
|
base_model: Snowflake/snowflake-arctic-embed-xs |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:416298 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: The radial profiles using frank for the seven targets can be seen |
|
in Figure 6. |
|
sentences: |
|
- At longer radio wavelengths, we selected the newest observations of the appropriate |
|
resolution from the VLA archive. |
|
- The radial profiles using frank for the seven targets can be seen in Figure 6. |
|
- For further information on observation and data calibration, refer to Hunt et al. |
|
(2021). |
|
- source_sentence: They are extragalactic scaled up versions of galactic Ultra Compact |
|
(UC) H ii regions, which are typically excited by a single massive star and are |
|
≲less-than-or-similar-to\lesssim 0.1 pc in size (Wood & Churchwell, 1989). |
|
sentences: |
|
- They are extragalactic scaled up versions of galactic Ultra Compact (UC) H ii |
|
regions, which are typically excited by a single massive star and are ≲less-than-or-similar-to\lesssim |
|
0.1 pc in size (Wood & Churchwell, 1989). |
|
- The LMT is a project operated by the Instituto Nacional de Astrófisica, Óptica, |
|
y Electrónica (Mexico) and the University of Massachusetts at Amherst (USA). |
|
- We measure the detection confidence in the resolved image as the ratio between |
|
the local mean posterior and the local posterior standard deviation of the estimated |
|
circular polarization, evaluated based on 1000 images drawn from the posterior |
|
distribution. |
|
- source_sentence: The flux density calibrator was 3C286, and the complex gain calibrator |
|
was J0836-2016. |
|
sentences: |
|
- The flux density calibrator was 3C286, and the complex gain calibrator was J0836-2016. |
|
- While rcsubscript𝑟cr_{\rm c} has a clear dependence on Dmaxsubscript𝐷maxD_{\rm |
|
max}, xMMSNsubscript𝑥MMSNx_{\rm MMSN} and tagesubscript𝑡aget_{\rm age}, ΣcsubscriptΣc\Sigma_{\rm |
|
c} only has weak dependence on Dmaxsubscript𝐷maxD_{\rm max}, and so is mostly |
|
sensitive to the scaling of the total initial planetesimal mass, xMMSNsubscript𝑥MMSNx_{\rm |
|
MMSN} and tagesubscript𝑡aget_{\rm age}. |
|
- 20 is valid only at r=rc𝑟subscript𝑟cr=r_{\rm c}, it has been shown that the surface |
|
density of dust at r>rc𝑟subscript𝑟cr>r_{\rm c} is expected to be flat for a primordial |
|
surface density exponent (−α𝛼-\alpha) of -3/2, or more generally proportional |
|
to r−0.6α+0.9superscript𝑟0.6𝛼0.9r^{-0.6\alpha+0.9} (Schüppler et al., 2016; Marino |
|
et al., 2017b; Geiler & Krivov, 2017). |
|
- source_sentence: We would like to thank A. Deller and W. Brisken for EHT-specific |
|
support with the use of DiFX. |
|
sentences: |
|
- Ice has one of the weakest strengths, and thus if we had assumed stronger solids |
|
the derived values of Dmaxsubscript𝐷D_{\max} and xMMSNsubscript𝑥MMSNx_{\rm MMSN} |
|
would be lower. |
|
- We would like to thank A. Deller and W. Brisken for EHT-specific support with |
|
the use of DiFX. |
|
- The wsmoothsubscript𝑤smoothw_{\rm smooth} chosen parameter ranged from 10−2superscript10210^{-2} |
|
to 10−4superscript10410^{-4} depending on the disc. |
|
- source_sentence: New higher resolution images and our parametric modelling confirmed |
|
this finding. |
|
sentences: |
|
- New higher resolution images and our parametric modelling confirmed this finding. |
|
- With the 3-bit correlator configuration, we obtained a total bandwidth of ∼similar-to\sim8 GHz |
|
across Ka-band. |
|
- Pan & Schlichting, 2012) and thus could slightly affect the surface density slope. |
|
--- |
|
|
|
# internstall-ice-crystal-xs |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-xs](https://huggingface.co/Snowflake/snowflake-arctic-embed-xs). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [Snowflake/snowflake-arctic-embed-xs](https://huggingface.co/Snowflake/snowflake-arctic-embed-xs) <!-- at revision 742da4f66e1823b5b4dbe6c320a1375a1fd85f9e --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("SimoneAstarita/interstellar-ice-crystal-xs") |
|
# Run inference |
|
sentences = [ |
|
'New higher resolution images and our parametric modelling confirmed this finding.', |
|
'New higher resolution images and our parametric modelling confirmed this finding.', |
|
'Pan & Schlichting, 2012) and thus could slightly affect the surface density slope.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 416,298 training samples |
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 42.81 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 42.81 tokens</li><li>max: 512 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | |
|
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Resolving the inner parsec of the blazar J1924–2914 with the Event Horizon Telescope</code> | <code>Resolving the inner parsec of the blazar J1924–2914 with the Event Horizon Telescope</code> | |
|
| <code>The radio source J1924–2914 (PKS 1921–293, OV–236) is a radio-loud quasar at a redshift z=0.353𝑧0.353z=0.353 (Wills & Wills, 1981; Jones et al., 2009).</code> | <code>The radio source J1924–2914 (PKS 1921–293, OV–236) is a radio-loud quasar at a redshift z=0.353𝑧0.353z=0.353 (Wills & Wills, 1981; Jones et al., 2009).</code> | |
|
| <code>The source exhibits strong optical variability and is highly polarized (Wills & Wills, 1981; Pica et al., 1988; Worrall & Wilkes, 1990).</code> | <code>The source exhibits strong optical variability and is highly polarized (Wills & Wills, 1981; Pica et al., 1988; Worrall & Wilkes, 1990).</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | |
|
|:------:|:-----:|:-------------:| |
|
| 0.0077 | 100 | 0.4784 | |
|
| 0.0154 | 200 | 0.2415 | |
|
| 0.0231 | 300 | 0.0424 | |
|
| 0.0307 | 400 | 0.021 | |
|
| 0.0384 | 500 | 0.0149 | |
|
| 0.0461 | 600 | 0.0081 | |
|
| 0.0538 | 700 | 0.0084 | |
|
| 0.0615 | 800 | 0.0067 | |
|
| 0.0692 | 900 | 0.0034 | |
|
| 0.0769 | 1000 | 0.0025 | |
|
| 0.0846 | 1100 | 0.0016 | |
|
| 0.0077 | 100 | 0.0025 | |
|
| 0.0154 | 200 | 0.0032 | |
|
| 0.0231 | 300 | 0.0026 | |
|
| 0.0307 | 400 | 0.0026 | |
|
| 0.0384 | 500 | 0.0041 | |
|
| 0.0461 | 600 | 0.0014 | |
|
| 0.0538 | 700 | 0.0019 | |
|
| 0.0615 | 800 | 0.0015 | |
|
| 0.0692 | 900 | 0.001 | |
|
| 0.0769 | 1000 | 0.0005 | |
|
| 0.0846 | 1100 | 0.0004 | |
|
| 0.0922 | 1200 | 0.0013 | |
|
| 0.0999 | 1300 | 0.0013 | |
|
| 0.1076 | 1400 | 0.0027 | |
|
| 0.1153 | 1500 | 0.0018 | |
|
| 0.1230 | 1600 | 0.001 | |
|
| 0.1307 | 1700 | 0.0014 | |
|
| 0.1384 | 1800 | 0.0012 | |
|
| 0.1460 | 1900 | 0.0041 | |
|
| 0.1537 | 2000 | 0.0009 | |
|
| 0.1614 | 2100 | 0.0005 | |
|
| 0.1691 | 2200 | 0.0011 | |
|
| 0.1768 | 2300 | 0.001 | |
|
| 0.1845 | 2400 | 0.0004 | |
|
| 0.1922 | 2500 | 0.0011 | |
|
| 0.1998 | 2600 | 0.0044 | |
|
| 0.2075 | 2700 | 0.0004 | |
|
| 0.2152 | 2800 | 0.0022 | |
|
| 0.2229 | 2900 | 0.0007 | |
|
| 0.2306 | 3000 | 0.0006 | |
|
| 0.2383 | 3100 | 0.0002 | |
|
| 0.2460 | 3200 | 0.0006 | |
|
| 0.2537 | 3300 | 0.0004 | |
|
| 0.2613 | 3400 | 0.0013 | |
|
| 0.2690 | 3500 | 0.0006 | |
|
| 0.2767 | 3600 | 0.0005 | |
|
| 0.2844 | 3700 | 0.0018 | |
|
| 0.2921 | 3800 | 0.0023 | |
|
| 0.2998 | 3900 | 0.0011 | |
|
| 0.3075 | 4000 | 0.0007 | |
|
| 0.3151 | 4100 | 0.0008 | |
|
| 0.3228 | 4200 | 0.0013 | |
|
| 0.3305 | 4300 | 0.0012 | |
|
| 0.3382 | 4400 | 0.001 | |
|
| 0.3459 | 4500 | 0.0016 | |
|
| 0.3536 | 4600 | 0.0025 | |
|
| 0.3613 | 4700 | 0.0015 | |
|
| 0.3689 | 4800 | 0.0018 | |
|
| 0.3766 | 4900 | 0.0019 | |
|
| 0.3843 | 5000 | 0.0021 | |
|
| 0.3920 | 5100 | 0.0018 | |
|
| 0.3997 | 5200 | 0.0004 | |
|
| 0.4074 | 5300 | 0.0006 | |
|
| 0.4151 | 5400 | 0.0007 | |
|
| 0.4228 | 5500 | 0.0009 | |
|
| 0.4304 | 5600 | 0.0004 | |
|
| 0.4381 | 5700 | 0.0003 | |
|
| 0.4458 | 5800 | 0.0007 | |
|
| 0.4535 | 5900 | 0.0013 | |
|
| 0.4612 | 6000 | 0.0007 | |
|
| 0.4689 | 6100 | 0.0005 | |
|
| 0.4766 | 6200 | 0.001 | |
|
| 0.4842 | 6300 | 0.0027 | |
|
| 0.4919 | 6400 | 0.0018 | |
|
| 0.4996 | 6500 | 0.0006 | |
|
| 0.5073 | 6600 | 0.0008 | |
|
| 0.5150 | 6700 | 0.0006 | |
|
| 0.5227 | 6800 | 0.0007 | |
|
| 0.5304 | 6900 | 0.001 | |
|
| 0.5380 | 7000 | 0.0007 | |
|
| 0.5457 | 7100 | 0.0005 | |
|
| 0.5534 | 7200 | 0.0012 | |
|
| 0.5611 | 7300 | 0.0012 | |
|
| 0.5688 | 7400 | 0.0011 | |
|
| 0.5765 | 7500 | 0.0005 | |
|
| 0.5842 | 7600 | 0.0013 | |
|
| 0.5919 | 7700 | 0.0012 | |
|
| 0.5995 | 7800 | 0.0007 | |
|
| 0.6072 | 7900 | 0.0012 | |
|
| 0.6149 | 8000 | 0.0012 | |
|
| 0.6226 | 8100 | 0.0003 | |
|
| 0.6303 | 8200 | 0.0003 | |
|
| 0.6380 | 8300 | 0.0003 | |
|
| 0.6457 | 8400 | 0.002 | |
|
| 0.6533 | 8500 | 0.0003 | |
|
| 0.6610 | 8600 | 0.0016 | |
|
| 0.6687 | 8700 | 0.0003 | |
|
| 0.6764 | 8800 | 0.0002 | |
|
| 0.6841 | 8900 | 0.0006 | |
|
| 0.6918 | 9000 | 0.0005 | |
|
| 0.6995 | 9100 | 0.0017 | |
|
| 0.7071 | 9200 | 0.0037 | |
|
| 0.7148 | 9300 | 0.0005 | |
|
| 0.7225 | 9400 | 0.0006 | |
|
| 0.7302 | 9500 | 0.0004 | |
|
| 0.7379 | 9600 | 0.0002 | |
|
| 0.7456 | 9700 | 0.0008 | |
|
| 0.7533 | 9800 | 0.0005 | |
|
| 0.7610 | 9900 | 0.0006 | |
|
| 0.7686 | 10000 | 0.0004 | |
|
| 0.7763 | 10100 | 0.0004 | |
|
| 0.7840 | 10200 | 0.0006 | |
|
| 0.7917 | 10300 | 0.0019 | |
|
| 0.7994 | 10400 | 0.0007 | |
|
| 0.8071 | 10500 | 0.0003 | |
|
| 0.8148 | 10600 | 0.0003 | |
|
| 0.8224 | 10700 | 0.0005 | |
|
| 0.8301 | 10800 | 0.0009 | |
|
| 0.8378 | 10900 | 0.0006 | |
|
| 0.8455 | 11000 | 0.002 | |
|
| 0.8532 | 11100 | 0.0018 | |
|
| 0.8609 | 11200 | 0.0009 | |
|
| 0.8686 | 11300 | 0.0004 | |
|
| 0.8762 | 11400 | 0.0005 | |
|
| 0.8839 | 11500 | 0.0008 | |
|
| 0.8916 | 11600 | 0.0003 | |
|
| 0.8993 | 11700 | 0.0002 | |
|
| 0.9070 | 11800 | 0.0004 | |
|
| 0.9147 | 11900 | 0.0007 | |
|
| 0.9224 | 12000 | 0.0009 | |
|
| 0.9301 | 12100 | 0.0007 | |
|
| 0.9377 | 12200 | 0.0007 | |
|
| 0.9454 | 12300 | 0.0009 | |
|
| 0.9531 | 12400 | 0.0007 | |
|
| 0.9608 | 12500 | 0.0009 | |
|
| 0.9685 | 12600 | 0.0004 | |
|
| 0.9762 | 12700 | 0.0002 | |
|
| 0.9839 | 12800 | 0.0003 | |
|
| 0.9915 | 12900 | 0.0002 | |
|
| 0.9992 | 13000 | 0.0002 | |
|
| 1.0069 | 13100 | 0.0006 | |
|
| 1.0146 | 13200 | 0.0007 | |
|
| 1.0223 | 13300 | 0.0007 | |
|
| 1.0300 | 13400 | 0.0005 | |
|
| 1.0377 | 13500 | 0.0008 | |
|
| 1.0453 | 13600 | 0.0016 | |
|
| 1.0530 | 13700 | 0.0007 | |
|
| 1.0607 | 13800 | 0.0013 | |
|
| 1.0684 | 13900 | 0.0005 | |
|
| 1.0761 | 14000 | 0.0002 | |
|
| 1.0838 | 14100 | 0.0001 | |
|
| 1.0915 | 14200 | 0.0003 | |
|
| 1.0992 | 14300 | 0.0003 | |
|
| 1.1068 | 14400 | 0.0006 | |
|
| 1.1145 | 14500 | 0.0002 | |
|
| 1.1222 | 14600 | 0.0003 | |
|
| 1.1299 | 14700 | 0.0002 | |
|
| 1.1376 | 14800 | 0.0006 | |
|
| 1.1453 | 14900 | 0.0011 | |
|
| 1.1530 | 15000 | 0.0004 | |
|
| 1.1606 | 15100 | 0.0001 | |
|
| 1.1683 | 15200 | 0.0003 | |
|
| 1.1760 | 15300 | 0.0001 | |
|
| 1.1837 | 15400 | 0.0002 | |
|
| 1.1914 | 15500 | 0.0001 | |
|
| 1.1991 | 15600 | 0.003 | |
|
| 1.2068 | 15700 | 0.0001 | |
|
| 1.2145 | 15800 | 0.0002 | |
|
| 1.2221 | 15900 | 0.0005 | |
|
| 1.2298 | 16000 | 0.0004 | |
|
| 1.2375 | 16100 | 0.0001 | |
|
| 1.2452 | 16200 | 0.0003 | |
|
| 1.2529 | 16300 | 0.0003 | |
|
| 1.2606 | 16400 | 0.0008 | |
|
| 1.2683 | 16500 | 0.0004 | |
|
| 1.2759 | 16600 | 0.0001 | |
|
| 1.2836 | 16700 | 0.0002 | |
|
| 1.2913 | 16800 | 0.0011 | |
|
| 1.2990 | 16900 | 0.0001 | |
|
| 1.3067 | 17000 | 0.0001 | |
|
| 1.3144 | 17100 | 0.0002 | |
|
| 1.3221 | 17200 | 0.0005 | |
|
| 1.3297 | 17300 | 0.0012 | |
|
| 1.3374 | 17400 | 0.0003 | |
|
| 1.3451 | 17500 | 0.0002 | |
|
| 1.3528 | 17600 | 0.0009 | |
|
| 1.3605 | 17700 | 0.0003 | |
|
| 1.3682 | 17800 | 0.0005 | |
|
| 1.3759 | 17900 | 0.0008 | |
|
| 1.3836 | 18000 | 0.0005 | |
|
| 1.3912 | 18100 | 0.0007 | |
|
| 1.3989 | 18200 | 0.0002 | |
|
| 1.4066 | 18300 | 0.0003 | |
|
| 1.4143 | 18400 | 0.0002 | |
|
| 1.4220 | 18500 | 0.0001 | |
|
| 1.4297 | 18600 | 0.0001 | |
|
| 1.4374 | 18700 | 0.0001 | |
|
| 1.4450 | 18800 | 0.0005 | |
|
| 1.4527 | 18900 | 0.0002 | |
|
| 1.4604 | 19000 | 0.0001 | |
|
| 1.4681 | 19100 | 0.0002 | |
|
| 1.4758 | 19200 | 0.0006 | |
|
| 1.4835 | 19300 | 0.0015 | |
|
| 1.4912 | 19400 | 0.0012 | |
|
| 1.4988 | 19500 | 0.0003 | |
|
| 1.5065 | 19600 | 0.0005 | |
|
| 1.5142 | 19700 | 0.0001 | |
|
| 1.5219 | 19800 | 0.0002 | |
|
| 1.5296 | 19900 | 0.0009 | |
|
| 1.5373 | 20000 | 0.0002 | |
|
| 1.5450 | 20100 | 0.0001 | |
|
| 1.5527 | 20200 | 0.0003 | |
|
| 1.5603 | 20300 | 0.0006 | |
|
| 1.5680 | 20400 | 0.0002 | |
|
| 1.5757 | 20500 | 0.0004 | |
|
| 1.5834 | 20600 | 0.0006 | |
|
| 1.5911 | 20700 | 0.0004 | |
|
| 1.5988 | 20800 | 0.0002 | |
|
| 1.6065 | 20900 | 0.0006 | |
|
| 1.6141 | 21000 | 0.0006 | |
|
| 1.6218 | 21100 | 0.0001 | |
|
| 1.6295 | 21200 | 0.0001 | |
|
| 1.6372 | 21300 | 0.0001 | |
|
| 1.6449 | 21400 | 0.0008 | |
|
| 1.6526 | 21500 | 0.0001 | |
|
| 1.6603 | 21600 | 0.0005 | |
|
| 1.6679 | 21700 | 0.0001 | |
|
| 1.6756 | 21800 | 0.0001 | |
|
| 1.6833 | 21900 | 0.0001 | |
|
| 1.6910 | 22000 | 0.0001 | |
|
| 1.6987 | 22100 | 0.0008 | |
|
| 1.7064 | 22200 | 0.0014 | |
|
| 1.7141 | 22300 | 0.0002 | |
|
| 1.7218 | 22400 | 0.0007 | |
|
| 1.7294 | 22500 | 0.0001 | |
|
| 1.7371 | 22600 | 0.0001 | |
|
| 1.7448 | 22700 | 0.0001 | |
|
| 1.7525 | 22800 | 0.0002 | |
|
| 1.7602 | 22900 | 0.0002 | |
|
| 1.7679 | 23000 | 0.0001 | |
|
| 1.7756 | 23100 | 0.0001 | |
|
| 1.7832 | 23200 | 0.0005 | |
|
| 1.7909 | 23300 | 0.0004 | |
|
| 1.7986 | 23400 | 0.0002 | |
|
| 1.8063 | 23500 | 0.0001 | |
|
| 1.8140 | 23600 | 0.0001 | |
|
| 1.8217 | 23700 | 0.0001 | |
|
| 1.8294 | 23800 | 0.0004 | |
|
| 1.8370 | 23900 | 0.0002 | |
|
| 1.8447 | 24000 | 0.0002 | |
|
| 1.8524 | 24100 | 0.0013 | |
|
| 1.8601 | 24200 | 0.0004 | |
|
| 1.8678 | 24300 | 0.0002 | |
|
| 1.8755 | 24400 | 0.0002 | |
|
| 1.8832 | 24500 | 0.0001 | |
|
| 1.8909 | 24600 | 0.0001 | |
|
| 1.8985 | 24700 | 0.0001 | |
|
| 1.9062 | 24800 | 0.0002 | |
|
| 1.9139 | 24900 | 0.0005 | |
|
| 1.9216 | 25000 | 0.0001 | |
|
| 1.9293 | 25100 | 0.0001 | |
|
| 1.9370 | 25200 | 0.0002 | |
|
| 1.9447 | 25300 | 0.0002 | |
|
| 1.9523 | 25400 | 0.0006 | |
|
| 1.9600 | 25500 | 0.0004 | |
|
| 1.9677 | 25600 | 0.0002 | |
|
| 1.9754 | 25700 | 0.0001 | |
|
| 1.9831 | 25800 | 0.0001 | |
|
| 1.9908 | 25900 | 0.0001 | |
|
| 1.9985 | 26000 | 0.0001 | |
|
| 2.0061 | 26100 | 0.0002 | |
|
| 2.0138 | 26200 | 0.0007 | |
|
| 2.0215 | 26300 | 0.0003 | |
|
| 2.0292 | 26400 | 0.0001 | |
|
| 2.0369 | 26500 | 0.0011 | |
|
| 2.0446 | 26600 | 0.0002 | |
|
| 2.0523 | 26700 | 0.0001 | |
|
| 2.0600 | 26800 | 0.0002 | |
|
| 2.0676 | 26900 | 0.0004 | |
|
| 2.0753 | 27000 | 0.0001 | |
|
| 2.0830 | 27100 | 0.0001 | |
|
| 2.0907 | 27200 | 0.0001 | |
|
| 2.0984 | 27300 | 0.0002 | |
|
| 2.1061 | 27400 | 0.0001 | |
|
| 2.1138 | 27500 | 0.0001 | |
|
| 2.1214 | 27600 | 0.0001 | |
|
| 2.1291 | 27700 | 0.0001 | |
|
| 2.1368 | 27800 | 0.0003 | |
|
| 2.1445 | 27900 | 0.0012 | |
|
| 2.1522 | 28000 | 0.0001 | |
|
| 2.1599 | 28100 | 0.0001 | |
|
| 2.1676 | 28200 | 0.0001 | |
|
| 2.1752 | 28300 | 0.0001 | |
|
| 2.1829 | 28400 | 0.0001 | |
|
| 2.1906 | 28500 | 0.0001 | |
|
| 2.1983 | 28600 | 0.0014 | |
|
| 2.2060 | 28700 | 0.0001 | |
|
| 2.2137 | 28800 | 0.0001 | |
|
| 2.2214 | 28900 | 0.0002 | |
|
| 2.2291 | 29000 | 0.0 | |
|
| 2.2367 | 29100 | 0.0001 | |
|
| 2.2444 | 29200 | 0.0001 | |
|
| 2.2521 | 29300 | 0.0001 | |
|
| 2.2598 | 29400 | 0.0001 | |
|
| 2.2675 | 29500 | 0.0001 | |
|
| 2.2752 | 29600 | 0.0001 | |
|
| 2.2829 | 29700 | 0.0001 | |
|
| 2.2905 | 29800 | 0.0001 | |
|
| 2.2982 | 29900 | 0.0001 | |
|
| 2.3059 | 30000 | 0.0001 | |
|
| 2.3136 | 30100 | 0.0001 | |
|
| 2.3213 | 30200 | 0.0002 | |
|
| 2.3290 | 30300 | 0.0011 | |
|
| 2.3367 | 30400 | 0.0001 | |
|
| 2.3444 | 30500 | 0.0001 | |
|
| 2.3520 | 30600 | 0.0005 | |
|
| 2.3597 | 30700 | 0.0001 | |
|
| 2.3674 | 30800 | 0.0001 | |
|
| 2.3751 | 30900 | 0.0006 | |
|
| 2.3828 | 31000 | 0.0001 | |
|
| 2.3905 | 31100 | 0.0001 | |
|
| 2.3982 | 31200 | 0.0002 | |
|
| 2.4058 | 31300 | 0.0001 | |
|
| 2.4135 | 31400 | 0.0001 | |
|
| 2.4212 | 31500 | 0.0001 | |
|
| 2.4289 | 31600 | 0.0001 | |
|
| 2.4366 | 31700 | 0.0001 | |
|
| 2.4443 | 31800 | 0.0004 | |
|
| 2.4520 | 31900 | 0.0001 | |
|
| 2.4596 | 32000 | 0.0001 | |
|
| 2.4673 | 32100 | 0.0002 | |
|
| 2.4750 | 32200 | 0.0002 | |
|
| 2.4827 | 32300 | 0.0004 | |
|
| 2.4904 | 32400 | 0.0008 | |
|
| 2.4981 | 32500 | 0.0001 | |
|
| 2.5058 | 32600 | 0.0001 | |
|
| 2.5135 | 32700 | 0.0001 | |
|
| 2.5211 | 32800 | 0.0001 | |
|
| 2.5288 | 32900 | 0.0006 | |
|
| 2.5365 | 33000 | 0.0001 | |
|
| 2.5442 | 33100 | 0.0001 | |
|
| 2.5519 | 33200 | 0.0002 | |
|
| 2.5596 | 33300 | 0.0001 | |
|
| 2.5673 | 33400 | 0.0002 | |
|
| 2.5749 | 33500 | 0.0001 | |
|
| 2.5826 | 33600 | 0.0001 | |
|
| 2.5903 | 33700 | 0.0001 | |
|
| 2.5980 | 33800 | 0.0001 | |
|
| 2.6057 | 33900 | 0.0001 | |
|
| 2.6134 | 34000 | 0.0007 | |
|
| 2.6211 | 34100 | 0.0 | |
|
| 2.6287 | 34200 | 0.0001 | |
|
| 2.6364 | 34300 | 0.0001 | |
|
| 2.6441 | 34400 | 0.0006 | |
|
| 2.6518 | 34500 | 0.0001 | |
|
| 2.6595 | 34600 | 0.0001 | |
|
| 2.6672 | 34700 | 0.0001 | |
|
| 2.6749 | 34800 | 0.0 | |
|
| 2.6826 | 34900 | 0.0001 | |
|
| 2.6902 | 35000 | 0.0001 | |
|
| 2.6979 | 35100 | 0.0005 | |
|
| 2.7056 | 35200 | 0.0006 | |
|
| 2.7133 | 35300 | 0.0001 | |
|
| 2.7210 | 35400 | 0.0005 | |
|
| 2.7287 | 35500 | 0.0001 | |
|
| 2.7364 | 35600 | 0.0001 | |
|
| 2.7440 | 35700 | 0.0001 | |
|
| 2.7517 | 35800 | 0.0001 | |
|
| 2.7594 | 35900 | 0.0001 | |
|
| 2.7671 | 36000 | 0.0001 | |
|
| 2.7748 | 36100 | 0.0001 | |
|
| 2.7825 | 36200 | 0.0005 | |
|
| 2.7902 | 36300 | 0.0001 | |
|
| 2.7978 | 36400 | 0.0001 | |
|
| 2.8055 | 36500 | 0.0001 | |
|
| 2.8132 | 36600 | 0.0001 | |
|
| 2.8209 | 36700 | 0.0001 | |
|
| 2.8286 | 36800 | 0.0001 | |
|
| 2.8363 | 36900 | 0.0001 | |
|
| 2.8440 | 37000 | 0.0001 | |
|
| 2.8517 | 37100 | 0.0013 | |
|
| 2.8593 | 37200 | 0.0001 | |
|
| 2.8670 | 37300 | 0.0001 | |
|
| 2.8747 | 37400 | 0.0001 | |
|
| 2.8824 | 37500 | 0.0001 | |
|
| 2.8901 | 37600 | 0.0001 | |
|
| 2.8978 | 37700 | 0.0001 | |
|
| 2.9055 | 37800 | 0.0001 | |
|
| 2.9131 | 37900 | 0.0002 | |
|
| 2.9208 | 38000 | 0.0001 | |
|
| 2.9285 | 38100 | 0.0001 | |
|
| 2.9362 | 38200 | 0.0001 | |
|
| 2.9439 | 38300 | 0.0001 | |
|
| 2.9516 | 38400 | 0.0004 | |
|
| 2.9593 | 38500 | 0.0001 | |
|
| 2.9669 | 38600 | 0.0001 | |
|
| 2.9746 | 38700 | 0.0001 | |
|
| 2.9823 | 38800 | 0.0001 | |
|
| 2.9900 | 38900 | 0.0001 | |
|
| 2.9977 | 39000 | 0.0001 | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.1.0 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.4.0+cu121 |
|
- Accelerate: 0.34.2 |
|
- Datasets: 3.0.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |